An Artificial Intelligence Paradigm for
Troubleshooting Software Bugs

December 24, 2017

Abstract

Troubleshooting is an important part of software development. It
starts when a bug is detected, e.g., when testing the system, and ends
when the relevant source code is fixed. Key actors in this process
are the tester, who runs the tests, and the developer, who writes the
program and is (hopefully) able to fix bugs (i.e., to debug them). In
modern software engineering, the interaction between tester and de-
veloper during troubleshooting is usually as follows. First, the tester
executes a suite of tests and finds a bug. The tester then files a bug
report, usually in some issue tracking system such as Bugzilla. Later,
the bug report is assigned to a developer, who is tasked to fix it. This
usually means first isolating the bug to find its root cause — the faulty
software module that caused the bug — and then fixing it. The fixed
software components are then committed to a version control system
such as Git so that the fix will be made available to the rest of the de-
velopment team and eventually in the next software version deployed.
Figure [1] provides a visual illustration of this process.

No
B — —
Generate| | Run Fot.lujngd? Issue Tracking Version Control
Tests Tests) System System
Yes —[I
File Bug Isolate .
Report Bug Fix Bug

Figure 1: An illustration of the standard workflow for troubleshooting soft-
ware in current software companies.

This process is known to be very costly. One reason for this is that
it is often difficult for the developer to reproduce the bug observed by
the tester and fix it, because the developer runs on a different machine

than the tester and in a different context. Another reason is that
programs are often large and complex.

To reduce the costs of software troubleshooting we propose a novel
paradigm for software troubleshooting that incorporates a helpful in-
telligent software agent. This agent employs a range of techniques from
the Artificial Intelligence (AI) literature to improve detection and iso-
lation of software bugs. (1) First, it learns which source files are likely
to fail by analyzing the source-code structure, revisions history and
past failures. (2) Then, it plans a test suit such that the software
components have a higher likelihood to have a bug will be extensively
tested. (3) When a test fails, a diagnosis (DX) algorithm considers the
observed tests (failed and passed), as well as knowledge learned from
past data, to suggest possible diagnoses and estimate their likelihoods.
(4) If further tests are needed to isolate the faulty software components,
then the Al agent automatically plans a minimal set of additional tests.
After executing these tests, additional diagnostic information is added
and fed to the DX algorithm. This iterative process continues until
a sufficiently accurate diagnosis is found. (5) Lastly, an automatic
genetic algorithm will try fixing the bug. We call this Al-integrated
paradigm for software troubleshooting the Learn, Test, Diagnose, Plan
and Fiz (LTDPF) paradigm. This process is illustrated in Figure

1. Learn Fault

Prediction Model

2. Generate Issue Tracking Version Control
Tests System System
Yes Sendlbug
details
4. Plan 3. Run DX File Bug 5. Fix
Tests Algorithm Report Bug
No Bug Yes
Isolated? Send

root cause

Figure 2: An illustration of the workflow with LTDPS.

LTDPF utilizes four Al techniques: machine learning, diagno-
sis, planning and genetic programming. Using these techniques we
propose to develop the five components of LTDPF paradigm. Some of
these components have been studied individually [TI, 2, 8 4, [5], but in
this proposal we aim to research and develop each one of the compo-
nents and integrate them into the modern standard troubleshooting
process, exploiting data generated by industry-standard software en-
gineering tools. Moreover, we aim to modify these Al components so
that they can affect and take advantage of the other Al components,
resulting in an effective synergy between them.

References

1]

W. E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa, A survey on software
fault localization, IEEE Transactions on Software Engineering 42 (8)
(2016) 707-740.

N. Cardoso, R. Abreu, Enhancing reasoning approaches to diagnose func-
tional and non-functional errors, in: the International Workshop on Prin-
ciples of Diagnosis (DX), 2014.

T. Zamir, R. Stern, M. Kalech, Using model-based diagnosis to improve
software testing, in: AAAI Conference on Artificial Intelligence, 2014.

A. Elmishali, R. Stern, M. Kalech, Data-augmented software diagnosis.,
in: AAAI, 2016, pp. 4003—-4009.

D. Radjenovic, M. Hericko, R. Torkar, A. Zivkovic, Software fault pre-
diction metrics: A systematic literature review, Information & Software
Technology 55 (8) (2013) 1397-1418.

