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ABSTRACT
It is often regarded as best-practice that the pro-
grammer that writes a program, and the tester that
tests the program, are different people. This sup-
posedly allows unbiased testing. This separation
is also motivated by economic reasons, where
testers are often cheaper to hire than program-
mers. As a result, the tester, especially in black-
box testing, is oblivious to the underlying code.
Thus, when a bug is found, the tester can only file
a bug report, which is later passed to the devel-
oper. The developer is then required to reproduce
the bug found by the tester, diagnose the cause of
this bug, and fix it. The first two task are often
very time consuming.
In our research, we suggest a combination of AI
techniques to improve the above process. When a
bug is found, a model-based diagnosis algorithm
is used to propose a set of possible diagnoses.
Then, a planning algorithm is used to suggest fur-
ther test steps for the tester, that will help in iden-
tifying which diagnosis is the correct one. Then,
the tester performs these tests and the diagnosis
algorithm uses the knowledge acquired by these
tests to identify the correct diagnosis or propose
further tests. When the correct diagnosis is found,
it is passed to the programmer, which then fixes
it. This AI-driven process can save the program-
mer time substantially, at the expense of minimal
additional effort by the tester. We propose and
evaluate several planning techniques to minimize
the extra work performed by the tester.

1 INTRODUCTION
Testing is a fundamental part of the software develop-
ment process (Myers et al., 2004). Often, most of the
testing is done by Quality Assurance (QA) profession-
als, and not by programmers. This separation, between
those who write the code and those who test it, is of-
ten regarded as a best-practice, supposedly allowing an
unbiased testing. Additionally, this separation is often
motivated by economic reasons, as programmers are
in general more expensive than QA professionals.

As a result of this separation, when a bug is found by
the tester, it cannot be immediately fixed, as the tester
may not be familiar with the tested code. This is es-
pecially true in black box testing (also known as func-
tional testing), where the tester is completely oblivious
to the tested code. Therefore, the common protocol
when a tester finds a bug is that this bug is reported
in a bug tracking systems, such as HP Quality Center
(formerly known as Test Director), Bugzilla or IBM
Rational ClearQuest. Periodically, the reported bugs
are prioritized by the product owner.1

Fixing such reported bugs usually involves two
tasks. First, the programmer needs to diagnose the
root cause of the bug. Then, the programmer attempts
to repair it. Diagnosing the root cause of a software
bug is often a challenging task that involves a trial-
and-error process: several possible diagnoses are sug-
gested by the programmer, which then performed tests
and probes to differentiate the correct diagnosis. This
trial-and-error process has several challenges. It is of-
ten non-trivial to reproduce bugs found by a tester (or
an end-user). Also, reproducing a bug in a develop-
ment environment may not represent the real (produc-
tion or testing) environment where the bug has oc-
curred. Thus, the diagnosis, and correspondingly the
patch that will fix the bug in the development envi-
ronment, may not solve the reported bug in the real
environment.

Note that since the tester is not familiar with the
tested software, he is obligated to a predefined test
suite. Otherwise, the tester might have performed ad-
ditional tests when a bug is observed to assist the pro-
grammer in finding the correct cause of the bug. In
our research, we aim at improving the software test-
ing process described above, by combining diagnosis
and planning algorithms for the field of Artificial In-
telligence. Model-Based Diagnosis algorithms have
been proposed in the past for the purpose of diag-
nosing software bugs (González-Sanchez et al., 2011;

1The exact title of the one which prioritizes the bugs de-
pends on the structure of the software company. For exam-
ple, in some cases this is the development team leader, in
others case it is a representative of the clients.
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Abreu et al., 2011; Wotawa and Nica, 2011; Stumpt-
ner and Wotawa, 1996). Thus, when a test fails and a
bug is found, one can use these algorithms to generate
automatically a set of candidate diagnoses.

To identify which of these candidate diagnoses is
indeed the correct diagnoses, we propose several algo-
rithms for planning additional, focused, testing steps
for the tester. These tests are generated automatically,
by considering the set of candidate diagnoses and
proposing tests that will differentiate between these
candidate diagnoses. This process of testing, diagnos-
ing and planning further testing is repeated until a sin-
gle diagnosis is found. In this paper we propose sev-
eral algorithms for planning these additional focused
testing.

The contributions of this paper is dual. First, we
present a methodology change to the software testing
and debugging process that uses model-based diagno-
sis and planning techniques (Section 2). Second, we
propose several planning techniques for this problem
that are meant to identify the correct diagnosis while
minimizing the tests steps performed by the tester.
These planning techniques are evaluated on simulated
software model graphs.

2 ARTIFICIAL INTELLIGENCE IN
SOFTWARE TESTING

In this section we propose our new paradigm for soft-
ware testing. The purpose of this new paradigm is
to improve the entire software development process
by using model-based diagnosis and planning meth-
ods. Next, we explain the traditional software testing
paradigm and supporting terms. Following, we present
our new, AI-enhanced, testing paradigm.

2.1 Traditional Software Testing
The purpose of the software testing process (or simply
testing) is to verify that the developed system functions
properly. Testing is often performed by QA profes-
sionals, while the programming is done by program-
mers. We refer to the person that performs the testing
as the tester, while the programmer will be referred to
as the developer.

One can view testing as part of an information pass-
ing process between the tester and the developer. This
process is depicted in the left side of Figure 1. The
tester executes a predefined sequence of steps to test
some functionality of the developed system. Such a
sequence of steps is called a test suite. The tester runs
all the steps in the test suite until either the test suite
is done and all the tests have passed, or one of the
tests fails. When a test fails - a bug has been found.
The tester then files a bug report in some bug track-
ing systems (e.g., HP Quality Center, Bugzilla or IBM
Rational ClearQuest), and continues to test other com-
ponents (if possible).2 Periodically, the reported bugs
are passed to the developer, possibly prioritized by the
product owner.

Most commonly, a developer that is given a bug to
fix will perform the following tasks.

2According to some paradigms, the tester should try to
continue the test suite even after a bug has been found.

1. Diagnose. Identify the root cause of the bug, i.e.,
the software component that is faulty.

2. Fix. Repair the faulty component.
To identify the faulty components, the developer of-

ten tests various parts of the system. The faulty com-
ponents are then inferred by the developer by observ-
ing the behavior of the system under these tests. Once
the faulty components are found, the developer fixes
them.

2.2 The Test, Diagnose and Plan Paradigm

1 
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•Discover a bug 

•File bug report 

Developer 

• Identify where is the bug 

•Fix the bug 
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AI 
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•Produce a set of possible diagnoses 

•Plan a test to prune false diagnoses 

Developer 
•Fix the bug 

Traditional Process Proposed Process 

Figure 1: The traditional vs. the proposed approach
for software testing.

In this paper we propose a new testing paradigm,
which improve the traditional process described above
by empowering the tester with tools from Artificial In-
telligence (AI). In the proposed paradigm, when a bug
is found a model-based diagnosis algorithm is run to
suggest a set of candidate diagnoses. If this set con-
tains a single diagnosis, then it is passed to the devel-
oper. Otherwise, a planning algorithm is used to sug-
gest further testing steps for the tester that will narrow
the set of possible diagnoses. The tester then performs
these tests. The observed output of these new tests is
given the diagnosis algorithm, which then outputs a
new set of candidate diagnoses. This process is re-
peated until a single diagnosis is found and passed to
the developer. Of course, other stopping conditions are
also possible, and will be discussed later in the paper.
We call this proposed paradigm the Test, Diagnose and
Plan (TDP) paradigm. TDP is illustrated on the right
side of Figure 1.

The great benefit of TDP over the traditional process
described in the previous section is that in TDP the de-
veloper is given the exact software components that
caused the bug. This information is given to the de-
veloper in addition to the traditional bug report. Thus,
TDP trades the time of the tester for the time of the de-
veloper. This by itself is beneficial, as developers are
often paid significantly higher salaries than testers.

However, we argue that the gain of using TDP is
even greater, as follows. A fundamental part of find-
ing what caused a bug is to reproduce the bug. Re-
producing a bug in the development environment (e.g.,
the workstation of the developer) is often surprisingly
difficult. This is because bug reports may be miss-
ing important details that are required to reproduce the
bug. Also, programs may have a state (e.g., executing a
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transaction, after the login page) that affects the behav-
ior of the program. Thus, reproducing a bug may re-
quire getting to the same state that the tester that found
the bug has been at. Another reason why reproducing
a bug by the developer can be hard is because some
programs contain a stochastic element. Hence, having
the tester performs additional tests immediately when
the bug is observed, as is done in TDP, is expected to
be more efficient then having the developer reproduces
the bug and search for its root cause. Even if the de-
veloper will still wish to reproduce the bug, it can be
much easier to do so if one knows the components that
caused it.

The TDP paradigm has two main components:

1. A diagnosis algorithm, that can infer from the
observed tests a set of possible candidate diag-
noses.

2. A planning algorithm, that suggests further tests
for the tester, to narrow the set of possible diag-
noses.

Next, we discuss the diagnosis algorithm component.

3 MODEL-BASED DIAGNOSIS FOR
SOFTWARE

The most basic entity of a diagnosis algorithm is the
component. A component can be defined for any level
of granularity of the diagnosed software: a class, a
function, a block etc. The granularity level of the com-
ponent is determined according to the granularity level
that one would like to focus on. Naturally, low level
granularity will result in a very focused diagnosis (e.g.,
pointing on the exact line of code that was faulty), but
will require more effort in obtaining that diagnosis.

The task of a diagnosis engine is to produce a diag-
nosis which is a set of components that are believed to
be faulty. In some cases, diagnosis algorithms return a
set of candidate diagnoses, where each of these candi-
dates can potentially be a diagnosis, according to the
observed tests.

Two main approaches have been proposed in the
model-based diagnosis literature for diagnosing soft-
ware faults (i.e., bugs). The first approach considers a
system description that models in logical terms the cor-
rect functionality of the software components (Wotawa
and Nica, 2011). If an observed output deviates from
the expected output as defined by the system descrip-
tion, then logical reasoning techniques are used to infer
candidate diagnoses that explain the unexpected out-
put. Although this approach is sound and complete
its main drawback is that it does not scale well. Addi-
tionally, modeling the correct behavior of every system
component is often infeasible in software.

An alternative approach to software diagnosis has
been proposed by Abreu et. al. (2011; 2009), that is
based on spectrum-based fault localization (SFL). In
this approach, there is no need to model the correct
functionality of each of the software components in the
system. All that is needed is the following information
from every observed test:

• The outcome of the test, i.e, whether the test has
passed correctly or a bug was found. This can be
performed manually be done by the tester.

Trace Outcome
v0 v1 v2 v3 v4 v5 v6 v7 v8 v9
0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 1 1 0 1
0 1 0 0 0 0 0 0 0 1 1

Table 1: A set of 4 tests indicated by their success.

• The trace of a test. This is the sequence of the
system components (e.g., functions, classes) that
were used during this observed test. Such a trace
can be obtained by using most common software
profilers, such as Java’s JVMTI, for example, or
in an applicative system log, if implemented.

Components that are on the trace of a passed test
are assumed to be healthy.3 If a test failed, this means
that at least one of the components in its trace is faulty.
This corresponds to a conflict from the classical MBD
literature (Reiter, 1987; de Kleer and Williams, 1987).
A conflict is a set of components, such that the as-
sumption that they are healthy is not consistent with
the observation (and the system description). Identify-
ing conflicts is useful for generating diagnosis. This is
because every diagnosis is a hitting set of all the con-
flicts. A hitting set of a set of conflicts is a set of com-
ponents that contains a representative component from
each conflicts in the conflict set (Reiter, 1987). Intu-
itively, since at least one component in every conflict
is faulty, a hitting set of the conflicts will explain the
unexpected observation.

As an example of this SFL-based approach and its
relation to conflicts and diagnoses, consider a system
with 10 components, {v0, ..., v9}. Figure 1 describes
four tests performed on this system by a tester. The
columns marked with ’1’ (except for the last column)
represent the components have been invoked in the
test (i.e., the components in the trace). The last col-
umn indicates whether the test passed (0) or failed
(1), as reported by the tester. Hence, in this exam-
ple the first two tests passed and the last two tests
failed. Based on the trace of the failed tests we can
generate the next conflicts: Λ1 = {v2, v5, v7, v8} and
Λ2 = {v1, v9}. The candidate diagnoses that corre-
spond to the hitting sets of these conflicts are there-
fore: {{v1, v2}, {v1, v5}, {v1, v7}, {v1, v8}, {v2, v9},
{v5, v9}, {v7, v9}, {v8, v9}}.

Performing more tests can narrow down the set
of candidate diagnoses. This is because each of
these candidate diagnoses must not contain compo-
nents from traces of passed tests, and every candidate
must also be a hitting set of all the conflicts - i.e., the
traces of the failed tests. Thus, adding tests may de-
crease the number of candidate diagnoses.

An important aspect of the this SFL-based ap-
proach (Abreu et al., 2011) is that it also provides a
mathematical formula to rank the set of candidate di-
agnoses according to the probability that they are cor-

3Actually, some software diagnosis algorithms can also
handle intermittent faults, where a faulty component may
sometime output correct behavior. For simplicity, we assume
in this paper that a faulty component will behave abnormally.
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1 

Figure 2: Pac-man example. (top) The initial pac-man
position, (right) the position where the bug was ob-
served

rect. The exact probability computations are detailed
by Abreu et. al. (2011).

This spectrum-based approach to software diagno-
sis can scale well to large systems. However, it is
not guaranteed to converge quickly to the correct di-
agnosis. Thus at the end of this process there can be a
quite large set of alternative candidate diagnoses. Our
purpose is to identify the correct diagnosis. Next, we
describe how to automatically plan additional tests, to
prune the set of candidate diagnosis, in an effort to find
the correct diagnoses.

4 PLANNING IN TDP
Execution Trace 

 

9 

Move Move 
Eat a power 

pellet 
Eat a power 

pellet 
Stop before 

a wall 
Stop before 

a wall 

Bug! F3 F2 F1 

Figure 3: Simple high-level execution trace for the
pac-man example.

The previous section reviewed a feasible algorithm
for finding a set of candidate diagnoses, given a set of
observed tests. Since there is often many candidate di-
agnoses, but only one correct diagnosis, further tests
should be performed. In this section we propose a
family of algorithms that plan a sequence of tests to
narrow down the number of possible diagnoses. These
tests will be generated by these algorithms on-the-fly
when the tester reports a bug. The tester will then exe-
cute these focused testing, and as a result, the number
of possible diagnoses will decrease, and the developer
will be given a smaller set diagnoses (or even a sin-
gle diagnosis) to consider. Importantly, our aim is to
minimize the tester effort to find a single diagnosis.

To illustrate how automated planning can be used to
intelligently direct testing efforts, consider the follow-
ing example. Assume that the developed software that
is tested is based on a variant of the well-known pac-
man computer game, depicted in Figure 2. We chose
such a simplistic example for clarity of presentation.
The left part of Figure 2 shows the initial state of this
variant of the pac-man game. Assume that the test per-
formed by the tester is where pac-man moved one step
to the right. The new location of pac-man has a power
pellet (the large circle) and it is bordering a wall (Fig-
ure 2, right). Now, assume that following this test,
the game crashed, i.e., a bug occurred. Also, assume
that the trace of this test consists of three functions, as
shown in Figure 3: (1) Move right (denoted in Figure 3

4 Figure 4: Pac-man example. The possible tests to per-
form.

as F1), (2) Eat power pellet (F2), and (3) Stop before
a wall (F3).

There are at least three explanations to the observed
bug: (1) the action “move right” (F1) failed, (2) the
action ”eat power pellet” failed, (3) touching the wall
caused a failure.4 It is easy to see that the diagnosis
algorithm described in Section 3 would generate these
three candidate diagnoses - {{F1}, {F2}, {F3}}.

Further testing can be performed to deduce which
of these three candidate diagnoses is the correct one.
To check the correctness of the first candidate diagno-
sis (F1 - “move right”) the tester can move pac-man
two steps up and one step to the right. To check the
second candidate (F2-“eat power pellet”), the tester
should move pac-man to one of the other power pel-
lets in the game. To check the third candidate diagno-
sis (F3-“touch a wall”), pac-man should be moved to
the left wall. These three possible tests are shown in
Figure 4, where each possible test is shown in a yel-
low arrow. By performing these additional tests, it is
possible to deduce a single correct diagnosis.

Algorithm 1: An Algorithmic View of TDP
Input: Tests, the tests performed by the tester

until the bug was found.
1 Ω← Compute diagnosis from Tests
2 while Highest Ω contains more than a single

diagnosis (or timeout has been reached) do
3 NewTestP lan← plan a new test to check at

least one candidate diagnosis
4 Tester performs NewTestP lan, record

output and trace in NewTest
5 Tests← Tests ∪NewTest
6 Ω← Compute diagnosis from Tests
7 end
8 return Ω

Generalizing the above example, Procedure 1 pro-
vides a more algorithmic view of TDP and how the
test planning and diagnosis algorithms are integrated.
First, a set of candidate diagnoses is generated from
the observed tests that were performed by the tester
until the bug has occurred (line 1 in Procedure 1). This
is done as described in Section 3. Then, a test suite

4Naturally, the combination of these function could also
cause the bug.
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(i.e., a sequence of test actions for the tester) is gener-
ated, such that at least one of the candidate diagnoses
is checked (line 3). The tester then performs this newly
generated test (line 4). After the test is performed,
the diagnosis algorithm is run again, now with the ad-
ditional information observed when the new test was
performed (line 6). If a single diagnosis is found, it is
passed to the developer, to fix the faulty software com-
ponent. Otherwise, this process continues by planning
and executing a new test.

Naturally, different stopping conditions can be de-
fined for Procedure 1. One can define a timeout for
this process, halting after a predefined amount of time
and passing to the developer the (reduced) set of can-
didate diagnoses. Another possible stopping condition
is based on the probability that every candidate diag-
nosis is given by the diagnosis algorithm. When the
set of candidate diagnoses contains a candidate diag-
nosis with probability that is higher than a predefined
value, the process is halted and that diagnosis is passed
to the developer. In our experiments, reported in Sec-
tion 5, we have used a combination of these conditions,
where if one of these conditions is met the experiment
is halted. See Section 5 for details.

Next, we discuss how to plan new tests automati-
cally. To do so, we first define what a call graph is.
Definition 1 (call graph) A call graph is a directed
AND/OR graph G = (V,Ea, Eo), where V is a set
of software components and Ea and Eo are a mutually
disjoint sets of edges. An edge between v1 and v2 rep-
resents a call from component v1 to component v2. Eo
are ’or’ edges representing conditional calls. Ea are
’and’ edges representing regular calls.
There are many automatic tools that generate a call
graph from a static view of the source code. A test
suite that will check a given candidate diagnosis can be
any executable path in the call graph that passes via a
component that is part of that candidate diagnoses. As
every step in the graph corresponds to an action of the
tester, every test suite has a cost which is the cost (e.g.,
length) of its path in the graph.

Naturally, there can be many possible tests to check
a given candidate diagnosis, and there may be many
candidate diagnoses. Next, we describe several meth-
ods to plan these additional test suites, such as to min-
imize cost, which corresponds to the testing effort, re-
quired to find the correct diagnosis.

4.1 Balancing Testing Effort and Information
Gain

Consider again the pac-man example, given in Fig-
ure 2. Recall that there are three proposed tests,
marked by yellow arrows in Figure 4. Intuitively, one
might choose to perform the first proposed test (move
up twice and then right), since it demands the least
number of steps. We assume for simplicity that the
effort exerted by the tester when executing a test cor-
relates with the number of steps in the test.

However, it is often the case that there are software
components in which bugs occur more often. These
components may be the more complex functions. For
example, assume that in the pac-man example describe
above, eating the power pellet is the most complex
function (F2), which is more likely to contain a bug

than the “move right” function (F1). These “bug-
probabilities” can be given as input by the developer
or system architect. There are even automatic methods
that can learn these probabilities. For example, there
are methods to predict which components are more
likely to cause a bug, by applying data mining methods
to project logs such as the source control history (Wu
et al., 2011).

Given the probability of failure of every software
components, we may prefer a test that checks the com-
ponent with the highest probability, although it is ex-
pensive in terms of number of steps. Thus, in the pac-
man example we might prefer to perform a test that
checks if the function F2 (eating the power pellet) is
faulty, instead of performing a test that checks if the
function F1 (walking to the right) is faulty. The logic
behind checking first the component that is most likely
to be faulty is that it will reduce the overall testing ef-
fort of finding the correct diagnosis.

Alternatively, we may plan the next testing steps by
considering both the fault probabilities as well as the
testing effort (number of testing steps), in an effort
to optimize a trade-off between the minimum testing
steps with the highest fault identification probability.

Next, we describe several possible methods to plan
and choose which test to perform. We use the term
focused testing methods to refer to these methods. The
overall aim of a focused testing method is to propose a
test suites (one at a time) to minimize total testing cost
required to find the correct diagnoses.

Probability-Based Focused Testing Methods
The first class of focused testing methods that we pro-
pose is based on the probabilities obtained by the di-
agnosis algorithm. Recall that the diagnosis algorithm
assigns every diagnosis with a probability score, that
marks how probable that diagnosis is to be correct. Us-
ing this probabilities, we propose two focused testing
methods. The first, called best diagnosis (BD), first
finds the most probable candidate diagnosis according
to the probabilities mentioned above. Then, it plans the
lowest cost path in the call graph that reaches at least
one of the components in that candidate diagnosis. An-
other probability based focused testing method, called
highest probability (HP), computes for every compo-
nent the probability that it is faulty, by taking the sum
over the probabilities of all the diagnoses that contain
that component. HP then returns the lowest cost path
that passes via the highest probability component.

Both of these probability-based approaches are mo-
tivated by the assumption that checking first high prob-
ability components will result in finding the correct di-
agnosis faster.

Lowest Cost Focused Testing Method
The next focused testing method that we propose is
very simple. Plan the lowest-cost path that passes via
at least one of the components in the set of candidate
diagnoses, whose probability is not one or zero. We
call this method the lowest-cost (LC) method. The last
conditions of LC are important. If a component has
a probability one for being faulty, there is no point in
checking it, as every such test will fail. Alternatively, if
a component has a probability of zero of being faulty,
running a test through it will not reveal more knowl-
edge about other faulty components.
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There are many possible hybrid focused testing
methods, which considers a combination of the lowest-
cost, best diagnosis, and highest-probability. One pos-
sible approach is to consider a weighted sum of the
probability and cost. Another possible approach is to
choose the component that is the closest to the entry
point, but is faulty with probability higher than some
predefined threshold.

Entropy-Based Focus Testing
All the previous focused testing methods choose a sin-
gle component and then plan the shortest path to it.
Thus, they completely ignore the components that are
passed in the planned test except for the single chosen
components. In the next focus testing method we pro-
pose, called the high-entropy (HE) method, we remedy
this. The lowest-cost path to every component that ex-
ists in a candidate diagnosis (and does not have a prob-
ability one or zero) is considered. Then we compute
the information gain of performing every such path,
by calculating the entropy of the test suite that follows
that path.

Calculating the entropy of a test suite T is done as
follows. Let Ω+ and Ω− be the set of candidate diag-
noses according to which T will pass and fail, respec-
tively. Correspondingly, let P (Ω+) and P (Ω−) be the
sum of the probabilities of each of the candidate diag-
nosis in Ω+ and Ω−, respectively. Then, the entropy
of T is calculated as

P (Ω+)log(P (Ω+)) + P (Ω−)log(P (Ω−))

Note that it is theoretically possible to compute ev-
ery possible path in the graph, measure the informa-
tion gained by it and choose that path. However, the
number of possible path in a graph is exponential, and
thus the alternative entropy-based approach described
above is preferred.

MDP-Based Focused Testing
All the previous methods, including the entropy-based,
are myopic. They are myopic in the sense that they
plan a test to check a single component at a time.
Thus, they do not perform any long-term planning of
the testing process. More generally, we propose to
view our problem as a problem of planning under un-
certainty (Blythe, 1999). Planning under uncertainty
is a fundamental challenge in Artificial Intelligence,
which is often addressed by modeling the problem as
a Markov Decision Process (MDP). Once a problem is
modeled as an MDP, it can be solved by applying one
of wide range of algorithms such as Value Iteration,
Policy Iteration (Russell and Norvig, 2010) and Real-
Time Dynamic Programming (Barto et al., 1995).

An MDP consists of the following:
• a set of states, which describe the possible states

that can be reached.
• an initial state, which is a state from which the

process starts.
• a set of actions that describe the valid transition

between states.
• a transition function, which gives the probability

of reaching a state s′ when performing action a in
state s.

• a reward function, which gives the gain of per-
forming an action in a given state.

Modeling our problem as an MDP can be done as fol-
lows. A state is the set of tests executed so far and
the observed outcome of these tests. The initial state is
the set of tests performed so far by tester. The actions
are the possible test suites that the tester can perform
in a given state. The transition function should give
the probability that a given test suite will fail or pass.
This can be computed by the failure probabilities of the
components in the test suite. As explained above, these
probabilities are given by the diagnosis algorithms.

Before describing the reward function, we observe
that since every state consists of a set of observed tests,
one can run the diagnosis algorithm on them, and ob-
tain a set of candidate diagnoses, each with a prob-
ability assigned to it. We call these set of candidate
diagnoses the candidate set of the state. A state with
a candidate set that contains a single diagnosis is re-
garded as a terminal state, as there is no point in mak-
ing additional actions from it. Thus, our MDP can be
viewed as a shortest path MDP, where we seek lowest-
cost paths to a terminal state. Hence, we set the reward
of a test suite is the negative value of its cost.

An MDP algorithm seeks the policy that maximizes
the expected reward that will be gained when execut-
ing that policy. Thus, in our case an MDP algorithm
will seek the policy that minimizes the number of test
steps until the correct diagnosis is found. This is ex-
actly our goal - focus the testing effort, such that the
correct diagnosis is found with minimal testing effort.

Theoretically, solving the above MDP will yield the
optimal policy, and hence will be the optimal focused
testing method. However, the number of actions and
states in this MDP is too large to solve optimally, since
most MPD solvers are at least linear in the number of
states in the MDP state space. It is easy to see that
the number of states in our MDP is exponentially large
(every possible set of tests and their outcome). We
therefore perform the following relaxations. First, in-
stead of considering all the possible test suites as pos-
sible actions, we use only a shortest path to every rel-
evant (i.e., part of a candidate diagnosis) component
as a possible action. This reduces the number of ac-
tions to be equal to the number of relevant compo-
nents. Additionally, we set a probability threshold t
that was used as follows. A state is regarded as a ter-
minal state if its candidate set contains a candidate that
has a probability higher than t. Thus, there is no need
in the modified MDP to reach a state with a candidate
set that contains a single candidate.

The last relaxation we used for our MDP is to
bound its horizon by a parameter h (this is basically
a bounded lookahead). This means that a state that
is h steps from the initial state is also regarded as a
terminal state. The reward of such states were mod-
ified to reflect how far they are from reaching a state
that has a candidate diagnosis that has a probability
t, as follows. For a state s let p(s) be the probabil-
ity of the candidate diagnosis in s that has the high-
est probability. Let sinit be the initial state, and let
s′ be a state on the horizon (i.e., at depth h). If
p(s′) ≥ t then its reward is zero (as no further test-
ing are needed). Otherwise, the reward of s′ is given
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by−(t−p(s′))× h
p(s′)−p(sinit)

, which simply assumes
that reducing the p(s′) value until it reaches t will con-
tinue in the same rate as it took to reduce p(sinit)
to p(s′). For example, assume that p(sinit) = 0.2,
p(s′) = 0.7 and h = 5. This means that on aver-
age, every increase of h (i.e., every additional test)
reduced p(sinit) by 0.7−0.2

5 = 0.1. Thus, we cal-
culate the reward as −(t − p(s′)) × h

p(sinit)−p(s′) =

−(0.9 − 0.7) × 5
0.7−0.2=-2. There are of course other

options to calculate this reward.
There are many MPD solvers that can be used. In

the experiments described below we set h to be three.
Also, to save runtime we used a simple Monte-Carlo
based MDP solver that samples the MDP state space
to estimate the expected utility of every action.

Next, we compare experimentally the focused test-
ing methods described above.

5 PRELIMINARY EXPERIMENTAL
RESULTS

This paper does not presume to provide comprehen-
sive experimental results to compare between the pro-
posed focused testing methods. Furthermore, much
more combinations and algorithms can be developed.
However, we report in this section the results of a pre-
liminary set experiments, in which we compared the
proposed focused testing methods.

Every experiment was performed as follows. A ran-
dom directed acyclic graph was generated with 300
nodes, where every two nodes are connected by an
edge with probability of 1.3%. For every node in the
graph a number of edges were set to be AND edges,
while the other edges were set to be OR edges (see
Definition 1). The number of AND edges was set as
a random number in the range [1...6]. This AND/OR
graph represents the call graph of a diagnosed system.
Then, 2% of the nodes in the graph are chosen ran-
domly to be faulty, and a set of 15 tests (observations)
are also chosen randomly, to be the initial set of test
performed by the tester before the bug was found.
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Figure 5: Preliminary experimental results on a 300
node call graph.

Following, we run all the algorithms described in
Section 4.1 as part of TDP (Procedure 1. An experi-
ment was halted when one of the following conditions

were met: 1) a candidate diagnosis with probability
higher than 0.9 was found, 2) a total of 160 TDP iter-
ations were performed, and 3) if no new tests exists.
The second condition was added to manage the total
runtime of the experiments. The third condition exists,
because there are cases where it is not possible to iden-
tify a single candidate diagnoses. This is known in the
MBD literature as an ambiguity set. In such a case,
no further testing will help, and the set of candidate
diagnoses will be passed to the developer.

We performed a set of 20 such experiments, and
measured the cost (the number of tested performed by
the tester) required to find a candidate diagnosis with
probability X , for X = 0.1, 0.2, .., .0.9. In 12 experi-
ments from this set all the algorithms eventually found
a candidate diagnosis with probability higher than 0.9.
Figure 5 shows the results for this set of 12 experi-
ments. The y-axis shows the average cost required to
find a candidate diagnosis with probability equivalent
to the x-axis value. Recall that the lowest-cost (Sec-
tion 4.1), best-diagnosis and highest probability (Sec-
tion 4.1) are denoted as LC, BD and HP, respectively.
The entropy-based (Section 4.1) and MDP-based (Sec-
tion 4.1) focused testing methods are named Entropy
and MDP in the figure.

Results show that HP, LC and BD outperformed
by the more sophisticated Entropy and MDP meth-
ods. MDP also outperformed all other methods sub-
stantially. This is reasonable, as the MDP method is
the only method that is not myopic, in the sense that it
plans for a sequence of test suites and not just the next
test suite. The MDP method was also the most com-
putationally intensive. The above experimental results
are very preliminary. We leave to future work runtime
comparison and a more comprehensive experimental
evaluation, which will include analysis of the experi-
ment parameters (e.g., graph size) and their effect on
the performance of the different algorithms.

6 DISCUSSION AND FUTURE WORK

1 

QA Tester Developer 

SCM Server Logs Source Code 

AI Engine 

Figure 6: Long-term vision of incorporating AI diag-
nosis and planning into the testing process.

In the traditional testing process, when the tester
finds a bug it files it in a bug tracking system. The
developer is then required to identify which software
component caused the bug, and fix it. In this paper
we proposed a testing paradigm, called Test, Diagnose
and Plan (TDP), where the tester, enhanced with AI
techniques, will identify for the developer the faulty
software component that caused the bug. TDP is built
from two components: (1) a diagnosis algorithm, that
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suggests a set of candidate diagnoses, and (2) a plan-
ning algorithm, that will guide the tester to perform an
additional set of tests, to identify which of the candi-
date diagnoses is the cause of the observed bug.

As a diagnosis algorithm, we propose to use the
software diagnosis algorithm of Abreu et. al. 2011,
which is a diagnosis algorithm that can scale to large
systems and and does not require any modeling of the
diagnosed software. The outcome of this algorithm is
a set of candidate diagnoses, and the probability that
each of these candidate diagnoses is correct. To reduce
this set of candidate diagnosis and find the correct di-
agnosis, we propose to run a focused testing methods,
which are algorithms for planning new test suites for
the tester to perform. Several such methods were pro-
posed, where the goal is to minimize the testing effort
required to find the correct diagnosis.

In general, the aim of the proposed paradigm change
proposed in this paper is to improve the software de-
velopment process by using Artificial Intelligence (AI)
tools to empower the tester and the testing process.
This is part of our long-term vision of using AI tech-
niques to improve the software development process,
which is shown in Figure 6. The AI engine will be
given access to the source code, the logs of the soft-
ware that are accumulated during the runtime of the
software (e.g., server logs), and the source-control
management tool (SCM) history. When a bug is de-
tected, either in the software logs or by a (human or
automated) tester, the AI engine will consider all these
data sources, to infer the most probable cause of the
bug. If needed, the tester will be prompted by the AI
engine to perform additional tests, to help identifying
the software component that caused the bug. This will
be an interactive process, where the tester performs ad-
ditional tests suggested by the AI engine, and reports
the observed outcome of these tests back to the AI en-
gine. Then, the developer will be given the faulty soft-
ware component, and will be tasked to fix it. The de-
veloper can then report back when the bug was fixed,
or to notify the AI engine that the bug was actually
caused by a different software component. The AI en-
gine will learn from this feedback to modify its diag-
nosis engine to avoid such errors in the future.

This paper presents only the first building block of
this vision: automated diagnosis and automated fo-
cused testing methods. Future work on this building
block will include empirical evaluation of the proposed
focused testing method. In particular, this will be done
first on synthetic call graphs and testing suites and ran-
dom faults. Then, we intend to perform several case
studies on real data, which will be gathered from the
source control managements and bug tracking tools of
a real software project in collaboration with existing
software companies. We are now pursuing such col-
laboration.
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