
© Michael Stahl, 2019, All Rights Reserved

Figuring out the Testing
of Configurable Software

Michael Stahl, Intel
Mar 2019

© Michael Stahl, 2019, All Rights Reserved

2

▪ Names and brands referenced herein may be claimed as the
property of third parties

▪ The views expressed in this presentation are solely my own, and
do not in any manner represent the views of my employer

▪ Information in this presentation is provided “AS IS” without any
warranties or representations of any kind

© Michael Stahl, 2019, All Rights Reserved

1.
ISO 26262,
Annex C
Road Vehicles — Functional Safety
1st installment

© Michael Stahl, 2019, All Rights Reserved

4

C.2 General

Annex C (normative) Software configuration

© Michael Stahl, 2019, All Rights Reserved

2.
Terms
1st installment

© Michael Stahl, 2019, All Rights Reserved

6

Warning!
The standard’s terminology won’t always
match to what you expect or are using!

© Michael Stahl, 2019, All Rights Reserved

Configurable
Software

Configured
Software

build script

7

Build script
parameters

code

#pragma …

#ifdef …

binary

© Michael Stahl, 2019, All Rights Reserved

Configuration
Parameters

build script

8

code

#pragma P2

#ifdef P1

binary

Build script
parameters

© Michael Stahl, 2019, All Rights Reserved

build script
9

Configuration
Data

code

#pragma P2

#ifdef P1

binary

© Michael Stahl, 2019, All Rights Reserved

build script
10

Configuration Data:
Compiler version; Defines; Optimization directives; …

code

#pragma P2

#ifdef P1

binary

© Michael Stahl, 2019, All Rights Reserved

Configurable
Software

Configured
Software

build script
11

Build script
parameters

code

#pragma …

#ifdef …

binary

Build script
parameters

Build script
parameters

© Michael Stahl, 2019, All Rights Reserved

3.
ISO 26262
Annex C
2nd Instalment

© Michael Stahl, 2019, All Rights Reserved

13

C.4.5

“A combination of the following verification
activities can achieve the complete
verification of the configured software”

a. “verification of the configurable software”,
b. “verification of the configuration data”, and
c. “verification of the configured software”.

© Michael Stahl, 2019, All Rights Reserved

14

Verification (in ISO 26262)
ver·i·fi·ca·tion | \ ˌver-ə-fə-ˈkā-shən

1) Static testing (reviews; static analysis)
2) Dynamic testing

© Michael Stahl, 2019, All Rights Reserved

15

C.4.5

“A combination of the following verification
activities can achieve the complete
verification of the configured software”

a. “verification of the configurable software”,
b. “verification of the configuration data”, and
c. “verification of the configured software”.

Acceptable options:
▪ (a) + (b)
▪ (b) + (c)

Dynamic testing

Dynamic testing

Static testing

© Michael Stahl, 2019, All Rights Reserved

16

Remember!
The discussion is about safety-relevant
requirements and features*

* Largely applicable to non-safety-relevant
features

© Michael Stahl, 2019, All Rights Reserved

17

Example: Cruise Control Module

▪ Configuration parameters:
□ Legacy Cruise Control (CC)
□ Adaptive CC (ACC)
□ Speed limit (SL)

▪ Configuration Data = Y/N
 Eight possible configurations

Build command:
Build [CC] [ACC] [SL] (default: CC)

Legacy Adaptive Speed Limit

N N N

N N Y

N Y N

N Y Y

Y N N

Y N Y

Y Y N

Y Y Y

© Michael Stahl, 2019, All Rights Reserved

18

Example: Cruise Control Module

Release 12.0.0.3 supports CC+SL

Option A:
a) Test the module with each of the combinations

b) Verify that the parameters used for version 12.0.0.3 are CC+SL

Option B:
b) Verify that the parameters used for version 12.0.0.3 are CC+SL

c) Test version 12.0.0.3

Eight versions

One version

© Michael Stahl, 2019, All Rights Reserved

19

When to use what?

(a)+(b) seems to always call for more work.

Why would you ever want to go that way?

© Michael Stahl, 2019, All Rights Reserved

20

When to use what?

Option (a)+(b):
▪ Configuration data is a range

… and you have many versions of the binary

▪ Open Source; Code delivery

Option (b)+(c): Binary delivery
▪ All other cases

The rest of this presentation assumes Option (b) + (c)

© Michael Stahl, 2019, All Rights Reserved

4.
Test Strategy
Configuration Parameters

© Michael Stahl, 2019, All Rights Reserved

22

What are we validating?

▪ Validity
□ Valid values are accepted
□ Invalid values rejected (the binary is not built)

▪ Functionality
□ The resulting binary and functionality is as required

© Michael Stahl, 2019, All Rights Reserved

Static testing

23

Parameter Data Validity

▪ Validity
□ All parameters assigned valid values

▪ Error protection measures
□ Invalid values or invalid combinations are

rejected by the build script

▪ Build System Change Control
□ Prevent unintended changes to the

parameters values

Dynamic testing

Static testing

Static testing

© Michael Stahl, 2019, All Rights Reserved

24

Functionality

If parameter A enables feature X
□ X exists when A is set
□ X does not exist when A is not set
□ X is functional when it exists

X is tested dynamically on the compiled binary

The binary (may) use Calibration Parameters
that are set with Calibration Data

© Michael Stahl, 2019, All Rights Reserved

5.
Terms
2nd Instalment

© Michael Stahl, 2019, All Rights Reserved

Configurable
Software

Configured
Software

build script

26

Build script
parameters

code

#pragma …

#ifdef …

binary

© Michael Stahl, 2019, All Rights Reserved

27

Calibration Data

Calibration Parameters

© Michael Stahl, 2019, All Rights Reserved

Calibration Parameters
28

Calibration Data

© Michael Stahl, 2019, All Rights Reserved

Configurable
Software

Configured
Software

build script
29

Build script
parameters

code

#pragma …

#ifdef …

binary

Build script
parameters

Build script
parameters

© Michael Stahl, 2019, All Rights Reserved

30

© Michael Stahl, 2019, All Rights Reserved

31

…

Platform A Platform B … Platform n

© Michael Stahl, 2019, All Rights Reserved

32

…

Platform A Platform B … Platform n

© Michael Stahl, 2019, All Rights Reserved

6.
Analysis of
configurations
Selecting the HW-SW combinations
to test

© Michael Stahl, 2019, All Rights Reserved

34

Platform-dependent
Configuration Parameters
▪ Take different values based on the HW
▪ For a given HW, a parameter may have:

□ Single viable value
□ Multiple viable values

▪ Each set of configuration parameters creates a
different “Configured Software” (CSW)

▪ A specific CSW may fit a number of HW
configurations

© Michael Stahl, 2019, All Rights Reserved

35

Types of SW-HW configurations

CSW1

CSW2

CSW1

CSW1

CSW2

HW1

HW2

HW1

HW2

HW1

1 to 1

1 to Many

Many to 1

Many to Many

CSW1

CSW2

HW1

HW2

© Michael Stahl, 2019, All Rights Reserved

36

CSW1

CSW2

CSW1

CSW1

CSW2

HW1

HW2

HW1

HW2

HW1

1 to 1

1 to Many

Many to 1

Many to Many

CSW1

CSW2

HW1

HW2

No ABSLegacy CC

Adaptive CC Has ABS

1 to 1

CC = Cruise Control

© Michael Stahl, 2019, All Rights Reserved

37

CSW1

CSW2

CSW1

CSW1

CSW2

HW1

HW2

HW1

HW2

HW1

1 to 1

1 to Many

Many to 1

Many to Many

CSW1

CSW2

HW1

HW2

Legacy /
Adaptive CC

No ABS

Has ABS

1 to Many

© Michael Stahl, 2019, All Rights Reserved

38

CSW1

CSW2

CSW1

CSW1

CSW2

HW1

HW2

HW1

HW2

HW1

1 to 1

1 to Many

Many to 1

Many to Many

CSW1

CSW2

HW1

HW2

Legacy CC

Adaptive CC
Has ABS

Many to 1

© Michael Stahl, 2019, All Rights Reserved

39

CSW1

CSW2

CSW1

CSW1

CSW2

HW1

HW2

HW1

HW2

HW1

1 to 1

1 to Many

Many to 1

Many to Many

CSW1

CSW2

HW1

HW2

Legacy CC

CC + SL

No ABS

Has ABS

Many to Many

CC = Cruise Control
SL = Speed Limit

© Michael Stahl, 2019, All Rights Reserved

40

CSW1
HWS1

HW1

1 to 1

1 to Many

Many to 1

Many to Many

Common

HW2

HW1

HW2

CSW2
HWS2

Common

CSW1

HWS1

HWS2

Common

CSW1
HWS1

HW1

Common

CSW2
HWS2

Common

CSW1
HWS1

HW1
Common

HW2CSW2
HWS2

Common

HWS = HW-Specific

Analysis of SW-HW configurations

© Michael Stahl, 2019, All Rights Reserved

41

CSW1
HWS1

HW1

1 to 1

1 to Many

Many to 1

Many to Many

Common

HW2

HW1

HW2

CSW2
HWS2

Common

CSW1

HWS1

HWS2

Common

CSW1
HWS1

HW1
Common

CSW2
HWS2

Common

CSW1
HWS1

HW1
Common

HW2

CSW2
HWS2

Common

CSW2

HWS1

HWS2

Common

HW1

CSW2
HWS2

HW1
Common

HW2

CSW1
HWS1

Common

© Michael Stahl, 2019, All Rights Reserved

42

CSWi
HWSi HWj

Common

...

...

Analysis of SW-HW configurations

© Michael Stahl, 2019, All Rights Reserved

7.
Lead
Configuration
Selection

Take me to

your Leader!

© Michael Stahl, 2019, All Rights Reserved

45

Lead Configuration selection
For each Safety feature:
Split the Configured SW versions to two groups

SW group A
Supports the feature

SW group B
Does not support
the feature

© Michael Stahl, 2019, All Rights Reserved

46

Lead Configuration selection
For each Safety feature:
Split the HW versions to two groups

HW group A
Supports the feature

HW group B
Does not support
the feature

© Michael Stahl, 2019, All Rights Reserved

47

Lead Configuration selection
For each Safety feature:
Split the HW versions to two groups

HW group A
Fits at least one binary
of SW group A

HW group B
Fits no binary from
group A

© Michael Stahl, 2019, All Rights Reserved

48

Lead Configuration selection

HW group A SW group A

© Michael Stahl, 2019, All Rights Reserved

49

Lead Configuration selection

HW group B SW group A

© Michael Stahl, 2019, All Rights Reserved

50

Lead Platform selection
Prioritize:
▪ Full feature support over partial
▪ Expected market-share leader
▪ Worst-case for the feature-under-test

□ e.g. Time constrained feature => slowest platform
□ e.g. Positioning feature => platform with worst sensors

© Michael Stahl, 2019, All Rights Reserved

51

Lead Platform selection
Considerations may contradict each other
▪ May need more than a single “Lead Platform”

▪ Can switch Lead Platform between test cycles

Performance requirements may need to be tested on
each platform

© Michael Stahl, 2019, All Rights Reserved

52

Lead Binary selection
Prioritize:
▪ Full feature support over partial (on the Lead Platform!)
▪ Expected market-share leader
▪ Most diverse support of Calibration parameters affecting

the feature-under-test (number of params; range)

Considerations may contradict each other
▪ May need more than a single “Lead Binary”
▪ Can switch Lead Binary between test cycles

© Michael Stahl, 2019, All Rights Reserved

53

Result: Lead Configuration

© Michael Stahl, 2019, All Rights Reserved

8.
Test Strategy
Calibration Parameters

© Michael Stahl, 2019, All Rights Reserved

Strategy
▪ Most testing is done on the Lead Configuration
▪ The results are considered applicable to all

configurations

55

The Role of the Lead Configuration

© Michael Stahl, 2019, All Rights Reserved

Assumptions / Justification
▪ The Lead Binary is a superset of the other binaries code
▪ The Lead Platform is a superset of the other HW options
▪ Testing covers the full range of config & calib values

 You may need more than a single Lead Configuration
 Must document the selection rationale
 Must document how config & calib values are covered

56

The Role of the Lead Configuration

© Michael Stahl, 2019, All Rights Reserved

57

What are we validating?

▪ Validity
□ Valid values are accepted
□ Invalid values rejected properly

▪ Runtime validity
□ Ensure the validity of values before using them

▪ Functionality
□ The parameters affect program behavior as required

© Michael Stahl, 2019, All Rights Reserved

58

What are we validating?

▪ Validity
□ Valid values are accepted
□ Invalid values rejected properly

▪ Runtime validity
□ Ensure the validity of values before using them

▪ Functionality
□ The parameters affect program behavior as required

© Michael Stahl, 2019, All Rights Reserved

59

Parameter Data Validity

▪ Dynamic testing
□ Equivalence Class Partitioning
□ Boundary Value analysis

▪ Test both valid and invalid values; combinations

▪ Ensure proper behavior for invalid cases

© Michael Stahl, 2019, All Rights Reserved

60

What are we validating?

▪ Validity
□ Valid values are accepted
□ Invalid values rejected properly

▪ Runtime validity
□ Ensure the validity of values before using them

▪ Functionality
□ The parameters affect program behavior as required

© Michael Stahl, 2019, All Rights Reserved

61

Runtime Validity Checks

Unique to Functional Safety!

ISO 26262:6-2018, Annex C.4.10

Recommended!

© Michael Stahl, 2019, All Rights Reserved

62

Plausibility checks

?
Runtime Parameter Data Validity

© Michael Stahl, 2019, All Rights Reserved

63

Runtime Parameter Data Validity

Redundant storage

?
==

© Michael Stahl, 2019, All Rights Reserved

64

Runtime Parameter Data Validity

Error detection mechanisms

© Michael Stahl, 2019, All Rights Reserved

65

Runtime Parameter Data Validity
Test Techniques

General approach:
□ Access the calibration parameter prior to use
□ Change it to plausible or non-plausible value
□ Verify correct behavior

▪ Debugger: Breakpoint – modify param value
▪ Test code: Change param values at known time or on

event
▪ Direct Memory access: Modify params in memory

© Michael Stahl, 2019, All Rights Reserved

66

What are we validating?

▪ Validity
□ Valid values are accepted
□ Invalid values rejected properly

▪ Runtime validity
□ Ensure the validity of values before using them

▪ Functionality
□ The parameters affect program behavior as required
□ Functional, non-functional, stress, load, regulatory, etc. etc.

© Michael Stahl, 2019, All Rights Reserved

67

▪ Full validation on the Lead Configuration
□ All values for enumerated parameters
□ EC / BV for ranges

▪ “Touch testing” on all the other binaries in SW group A
□ Show the feature is alive
□ Calibration parameter set to expected “popular” values
□ Lead Platform or any other HW that supports the feature

▪ Basic negative test
□ Ensure proper behavior when calling the non-existing feature
□ Run on each of the binaries is SW group B
□ Use any HW platform that fits the tested binary

Functionality
Independent Calibration Parameter

© Michael Stahl, 2019, All Rights Reserved

68

Functionality
Dependent Calibration Parameters

▪ Define the combinations to cover
▪ Select the Lead Combinations: most important due to

□ Worst-cases; Expected Popularity; Etc.

▪ On the Lead Configuration
□ Full testing on the Lead Combinations

▫ Including interaction between features
□ Touch testing on the less important combinations

▪ On non-lead configurations
□ Touch testing on the Lead Combinations
□ Range and validity check on the less important combinations

▪ Basic negative test

© Michael Stahl, 2019, All Rights Reserved

69

© Michael Stahl, 2019, All Rights Reserved

Let’s
Summarize…

70

© Michael Stahl, 2019, All Rights Reserved

71

Disclaimer
This was MY interpretation of the standard

Backed by a few expert reviewers
…but certainly not an official view

© Michael Stahl, 2019, All Rights Reserved

72

Remember!
The discussion is about safety-relevant
requirements and features*

* Largely applicable to non-safety-relevant
features

© Michael Stahl, 2019, All Rights Reserved

Software Code
+

Configuration Parameters
=

Configurable Software

73

#pragma …

#ifdef …

© Michael Stahl, 2019, All Rights Reserved

Configurable Software
+

Configuration Data
=

Configured Software

74

© Michael Stahl, 2019, All Rights Reserved

Configured Software
(may) have

Parameters

75

© Michael Stahl, 2019, All Rights Reserved

Configured Software
(may) have

Calibration Parameters

76

© Michael Stahl, 2019, All Rights Reserved

Configured Software
+

Calibration a
=

Specific SW Application

77

© Michael Stahl, 2019, All Rights Reserved

Configured Software
+

Calibration Data
=

Specific SW Application

78

© Michael Stahl, 2019, All Rights Reserved

There are
1

options to verify the
configurable software

79

© Michael Stahl, 2019, All Rights Reserved

There are
2

options to verify the
configurable software

80

© Michael Stahl, 2019, All Rights Reserved

Option (a) + (b)

81

Configuration

Data

Configured SW

Dynamic testing

Static testing

Configurable

SW

Configuration

DataConfiguration

Data

Configured SW
Configured SW

Configuration

Data x

© Michael Stahl, 2019, All Rights Reserved

Option (b) + (c)

82

Configurable

SW

Configuration

Data

Configured SW

Dynamic testing

Static testing

© Michael Stahl, 2019, All Rights Reserved

83

Configured SW Calibration

Data

Application

specific SW
Application

specific SW
Application

specific SW

Dynamic testing

Calibration

DataCalibration

Data

Both options

© Michael Stahl, 2019, All Rights Reserved

Select
&

84

1 1

© Michael Stahl, 2019, All Rights Reserved

Select
&

85

Lead Platform 1

© Michael Stahl, 2019, All Rights Reserved

Select
&

to make the
1

86

Lead Platform Lead Binary

© Michael Stahl, 2019, All Rights Reserved

Select
&

to make the
Lead Configuration1

87

Lead Platform Lead Binary

© Michael Stahl, 2019, All Rights Reserved

Configuration Parameters

V 1
E P 1

88

What is tested?

© Michael Stahl, 2019, All Rights Reserved

Configuration Parameters

Validity
E P

89

What is tested?

© Michael Stahl, 2019, All Rights Reserved

Configuration Parameters

Validity
Error Protection

90

What is tested?

Calibration Parameters

V 1
R V 1
F 1

© Michael Stahl, 2019, All Rights Reserved

Configuration Parameters

Validity
Error Protection

91

What is tested?

Calibration Parameters

Validity
R V 1
F 1

© Michael Stahl, 2019, All Rights Reserved

Configuration Parameters

Validity
Error Protection

92

What is tested?

Calibration Parameters

Validity
Runtime Validity
F 1

© Michael Stahl, 2019, All Rights Reserved

Configuration Parameters

Validity
Error Protection

93

What is tested?

Calibration Parameters

Validity
Runtime Validity
Full Validation
(functional, non-functional, stress,
load, regulatory, etc. etc.)

© Michael Stahl, 2019, All Rights Reserved

Mostly on the L C 1

s

94

Where do we test?

© Michael Stahl, 2019, All Rights Reserved

Mostly on the Lead Configuration

Less on the other HW-SW combinations

95

Where do we test?

© Michael Stahl, 2019, All Rights Reserved

96

© Michael Stahl, 2019, All Rights Reserved

97

Thanks!
Any questions?
You can find me at
▪ michael.stahl@intel.com
▪ LinkedIn: michaelmstahl

You can find this presentation + paper at
www.testprincipia.com

mailto:Michael.stahl@intel.com
https://www.linkedin.com/in/michaelmstahl/
http://www.testprincipia.com/

© Michael Stahl, 2019, All Rights Reserved

Credits
Thanks Simone Fabris, Maurizio Iacaruso, Gabriele
Paoloni and Itamar Sharoni, from Intel and Mobileye,
for their invaluable advice and review while writing
this paper.

Special thanks to all the people who made and
released these awesome resources for free:

▪ Presentation template by SlidesCarnival
▪ Photographs by Unsplash

98

http://www.slidescarnival.com/
http://unsplash.com/

© Michael Stahl, 2019, All Rights Reserved

99

Backup
Static, Independent and Dependent
Configuration Parameters

© Michael Stahl, 2019, All Rights Reserved

100

CSWi
HWSi HWj

Common

...

...

Platform-dependent

parameters

Common

parameters

Analysis of SW-HW configurations

© Michael Stahl, 2019, All Rights Reserved

101

Static Parameters

▪ #pragma directives that are always used
▪ #ifdef clauses that are always True (or always False)
▪ A build-script parameter that is used with only a

single value
▪ Calibration parameters that get only one value

Platform selection: Ignore these
=> Test on the Lead Platform

© Michael Stahl, 2019, All Rights Reserved

102

Platform Dependent Parameters

Assumption: Per-feature, the configured SW versions are
more-or-less the same:
▪ Much is common

▪ Some differences to accommodate different HW platforms

Platform selection: The differences are what influence
the Lead Platform selection
=> Test on the Lead Platform

If the assumption is wrong, treat each unique implementation of the
feature as a separate feature

© Michael Stahl, 2019, All Rights Reserved

103

Common Parameters

Any of the SW-HW combinations (from groups A) are
good for testing these parameters

Platform selection: Any platform that supports the feature
=> Test on the Lead Platform

© Michael Stahl, 2019, All Rights Reserved

104

Interaction Between Parameters

Independent parameter: The impact on the Configured SW
is the same, regardless to other Config Params

CSW1

CSW2

CSW1

CSW1

CSW2

HW1

HW2

HW1

HW2

HW1

1 to 1

1 to Many

Many to 1

Many to Many

CSW1

CSW2

HW1

HW2

CC + SL

CC only

© Michael Stahl, 2019, All Rights Reserved

105

Interaction Between Parameters

Independent parameter: The impact on the Configured SW
is the same, regardless to other Config Params

Platform selection: Any platform that supports the feature
=> Test on the Lead Platform

© Michael Stahl, 2019, All Rights Reserved

106

Interaction Between Parameters

Dependent parameter: The impact on the Configured
SW is dependent on other Config Params

CSW1

CSW2

CSW1

CSW1

CSW2

HW1

HW2

HW1

HW2

HW1

1 to 1

1 to Many

Many to 1

Many to Many

CSW1

CSW2

HW1

HW2

Adaptive CC

CC only

© Michael Stahl, 2019, All Rights Reserved

107

Interaction Between Parameters

Dependent parameter: The impact on the Configured
SW is dependent on other Config Params

Platform selection:
▪ Create ALL CSW permutations
▪ Preferred platform will support all permutations

=> Test on the Lead Platform

Assumption: In the real world, there won’t be that many CSW’s

Since multiple variations are easier to do with Calibration Parameters

