
Responsibly Reporting Performance Test
Results: Trends, Noise, and Uncertainty
 By Michael Stahl - December 24, 2018

https://www.stickyminds.com/article/responsibly-reporting-performance-test-results-trends-

noise-and-uncertainty

Summary:

In order for performance test results to have value, you should report them in context. There

are two main considerations: How do these compare to previous results? And how can we

provide early reports on performance while emphasizing that these are preliminary results

that may change significantly as we progress? Here are some ideas for responsible reporting.

Reporting performance test results is not a trivial undertaking. It’s much more nuanced than

simply reporting pass or fail conditions, and if everyone isn’t on the same page about what

the results mean and how to interpret them, it can end up causing confusion and minimizing

value. That’s why it’s important to have an effective method of reporting performance test

results.

But on top of reporting results, there are two additional aspects of performance test reporting

that need to be addressed.

First, how do the current results compare to results from a previous drop? Is there an

improvement or degradation? Putting it differently: What’s the trend?

Second, some performance tests require preparation of large amounts of data, such as testing

database performance or object recognition accuracy in images. At the start of the project we

don’t have all the needed data, but we usually already start performance testing on the partial

data we do have. How can we provide early reports on performance while maintaining a clear

message that these are preliminary results that may change significantly as we progress?

Trend Calculation

Let’s assume we are testing the CPU utilization. A reduction in the utilization value indicates

an improvement in the product’s use of system resources. If the result we measure on the

current release is a bit lower than the results on the previous release, can we confidently

report that the new release improved the performance? It turns out this is not so

straightforward.

If we run the same performance test, using the same version and running on the same

platform, we won’t get the same value with each test run. Instead, we will get some spread of

the results. This is because parallel to our code, the system runs many other processes: OS

utilities, antivirus software, network protocol that reacts to messages on the network, etc. (As

I write this, there are about a hundred fifty services and processes running in the background

on my PC.) Even the ambient temperature, the screen brightness, and the level of battery

charge have some impact on the performance.

All this adds variance to the system, which in turn adds variance to the CPU performance.

We sometime call this the measurement’s “noise.” As long as the difference between

measurements are within the noise level, we can’t say for sure that we have a clear trend.

https://www.stickyminds.com/users/michael-stahl
https://www.stickyminds.com/article/responsibly-reporting-performance-test-results-trends-noise-and-uncertainty
https://www.stickyminds.com/article/responsibly-reporting-performance-test-results-trends-noise-and-uncertainty
https://www.stickyminds.com/article/better-way-reporting-performance-test-results
https://www.stickyminds.com/article/better-way-reporting-performance-test-results

If we execute the test many times, we can calculate the statistical distribution of the result,

which in turn gives us a measure of the process capability of our platform. When the results’

distribution is a known statistical distribution, we can be relatively confident in assessing if a

new result indicates a real change. If the results are distributed according to the normal

distribution, any result that falls within plus or minus three standard deviations (STDev) is

within the “noise” level and can’t be immediately interpreted as a real change.

There are a few cases when we can say confidently that there is a change:

 When the result clearly deviates from the regular distribution (for normal distribution, this

will be a deviation of more than three standard deviations from the average)

 If the result is within the distribution range, but additional measurements on new versions of

the product consistently show a deviation in the same direction

This second case needs further explanation. In a normal distribution, if nothing changed in

the code that impacts CPU utilization, measurements on new versions of the code will usually

fall within one standard deviation from the average. Every now and then we may get a

measurement that is between one and two STDevs. In rare cases we will have a measurement

that falls between two and three STDevs. In all cases, the results will spread more or less

evenly above or below the average. But if measurements on new versions of the code result

in measurements that are consistently above (or below) the average, then apparently a real

change took place, even if all results fall within the expected noise range of three STDevs.

How many times must the measurements fall on one side of the average before we can say

that the change is meaningful? This depends on the distribution and is related to the field of

statistical process control.

The Western Electric rules define when a deviation of normally distributed parameter is

meaningful:

 Eight consecutive drops of the program show a consistent deviation of less than one STDev

(“consistent” means all measurements are above or below the average)

 Four out of five consecutive drops of the program show a consistent deviation between one

and two STDevs

 Two out of three consecutive drops of the program show a consistent deviation between two

and three STDevs

 A single case shows the measurement is over three STDevs form the average in any direction

This is all nice, but what if we have no idea what the process capability of our project is and

don’t have time to repeat tests dozens of times to generate this statistic?

Even if we do have results of many runs, it may be on different machines, so the machines’

slight physical variabilities add additional noise. And in cases where we do know the

distribution of the results, it may be an abnormal distribution, so it’s not clear what rules to

use to define a real change.

In such cases, we can draw on knowledge of the system and its use to decide what would be

considered a significant change (e.g., “a change of 2 percent”). Once we make such a

decision, it is possible to define simple rules to define what’s a real trend.

My colleague Gal Steiner and I developed just such a set of rules:

https://en.wikipedia.org/wiki/Process_capability
https://en.wikipedia.org/wiki/Western_Electric_rules

1. The trend is decided by comparing the results on the current version to the results on the

previous (N-1) version.

2. A trend can be no change, increasing, or decreasing.

3. If the change from N-1 is above 2 percent, the trend is increasing or decreasing (depending

on the direction of the change)

4. If the change from N-1 is less than 2 percent, use the following table to decide the trend.

The trend value in

version N-1

Current version

shows increase of

less than 2% above

N-1

Current version

shows decrease of

less than 2% below

N-1

Increasing Increasing No change

Decreasing No change Decreasing

No change No change No change

The basic approach that the above table implements is this: If the change of less than 2

percent continues in the same direction of a significant change in version N-1, then the

change continues to be significant. If the change is in the opposite direction, then it’s

insignificant.

This is a simplistic algorithm and therefore imperfect. For example, it allows a small change

of less than 2 percent in each progressive version to continue undetected for a long time. But

the algorithm can be made better by looking also at N-2 results or by using an EWMA chart.

Once you have a trend metric, I recommend adding it to your presentation of the results.

Reporting Initial Results

When you are at the start of a project, it is possible that you did not yet implement all the

tests by which you will determine the system’s performance. However, you are already

running some tests, so you would like to publish their results—but you’re concerned about

how they will be interpreted. You are aware that further testing may change the overall

picture.

We need a method that allows for publishing the results while conveying a clear message that

these are initial results and may change dramatically. Just saying it won’t always help; people

tend to quote the numbers you publish without the disclaimers associated with them.

To make this clearer, let’s use an example.

You are developing an automation system for packaging green peppers. The system uses a

camera and a computer vision module to identify peppers with defects and extract them

before they are packaged. To test the system, you plan to record the video coming from the

camera while a mix of good and bad peppers are passing through the packaging line. These

videos will be fed into the defect-identification algorithm, and you will then check how many

https://en.wikipedia.org/wiki/EWMA_chart

of the defective peppers were identified correctly and how many good peppers were

erroneously marked as defective.

These recordings take a long time, and so far you only have sixty out of the two hundred

recordings you plan to do. Running the sixty videos through the system resulted in an average

correct identification of 75 percent. Should you report this or not?

On one hand, it is possible that the next one hundred forty videos will have much better

results, in which case you created a false alarm. On the other hand, the results on the

remaining videos may be much worse, in which case you created a false sense of

confidence—and an unpleasant surprise once you are done running all the tests.

The solution is to report the results but clearly articulate their inaccurate nature by using

the cone of uncertainty.

First, let’s look at the distribution of results for the sixty videos you already tested. Let’s say

you found that for the 10th percentile of the recordings, the system identified 58 percent or

less of the defective peppers, and in the 90th percentile of the recordings, the system

identified 93 percent or more of the defects. Let’s assume that this range of 58 percent to 93

percent defines, more or less, our system defect-identification capability, and that in future

videos this will continue to be the range of best and worst identification results.

Based on the results we already have and on the knowledge that we still have one hundred

forty videos to record and test, we can give an estimation of the best and worst final results:

Our report will therefore be:

Parameter Expected result

range

Tests performed

Defective pepper

identification

63% to 87% 30% [60 out of 200]

As we continue to record and test videos, we will have more real results and less uncertainty.

For example, let’s say that after testing one hundred twenty recordings, the 10th percentile of

the results identified 67 percent or lower of the defective peppers, the 90th percentile

identified 88 percent or higher and the average is now 73 percent. The resulting range

estimation will change:

https://en.wikipedia.org/wiki/Cone_of_Uncertainty

Note how the uncertainty range shrunk: After sixty tests we had a range of 24 percentage

points, and after doing sixty more tests, the range shrank to only 8.4 percentage points.

As we get closer to running the full set of planned tests, the uncertainty will continue to

reduce. Representing the uncertainty range visually explains why this is called a “cone of

uncertainty”—the graph looks like a cone that gets narrower as more information become

available:

Even if identifying defective peppers is not your area of expertise, I assume that there are

parameters you measure and report by taking an average of many tests. In these cases, the

cone of uncertainty concept may be relevant when you are asked to report results before all

the tests are executed.

Finally, a reality check. I used the idea of reporting trends. I did not use the cone of

uncertainty idea, and I haven’t seen anyone else use it, either. So if you adopt it, do let me

know how it works for you!

