
Protocol Fuzzer on 
Embedded Firmware
A Case Study

Dor Levy, Michael Stahl
QA&Test, Oct’21



Whoami == Dor Levy

2

◎ Senior Security Researcher @ Intel

◎ MSc in computer engineering & applied physics 
(Hebrew University)

◎ Issued 20 patents in various fields including 
security systems and user & autonomous 
systems & co-authored 10 papers



My co-author: Michael Stahl

3

◎ SW Validation Architect @ Intel

◎ BSc in Electronics Engineering (Ben Gurion U)

◎ 22 years’ experience in testing embedded software

◎ Papers and presentations: www.testprincipia.com

http://www.testprincipia.com/


Agenda

4

◎ Fuzzing: Concept, terms and definitions 
◎ DUT overview

○ The embedded system
○ The protocol

◎ Embedded System Fuzzing Challenges
◎ Fuzzer Architecture
◎ Results & lessons learned



1.
Fuzzing
Concept, terms and definitions

5



Created by Uwe Kils (iceberg) and User:Wiska Bodo (sky)., CC BY-SA 3.0 

<http://creativecommons.org/licenses/by-sa/3.0/>, via Wikimedia Commons

The challenge of 
Input Validation

6



void set_clock_settings(
clock_req_t *pReq, 
uint32_t* pRspLen); 

Input



void set_clock_settings(
clock_req_t *pReq, 
uint32_t* pRspLen); 

Input

Input

typedef struct _clock_req_t
{

clk_header Header;
uint8_t ReqClock;
uint8_t SettingType;
... (15 more...)

} clock_req_t;



typedef struct _clock_req_t
{

clk_header Header;
uint8_t ReqClock;
uint8_t SettingType;
... (15 more...)

} clock_req_t;

typedef struct _clk_header
{

uint32_t ApiVersion;
COMMAND_ID CommandId;
status_t Status;
uint32_t BufferLength;
CMD_FLAGS Flags;

} clk_header;

Enumerations (also inputs!)

Another Struct!!! 



Other examples…

◎ Windows Registry keys
◎ Each parameter in a config file, INI file, etc

1

0



◎ Command line arguments

1

1



◎ Fields in network packet or streams



◎ Configurations

◎ Messages sent via drivers

◎ Values parsed from a blob

◎ Sensor data

…

You got the idea.



Motivation:
Improve coverage

Find vulnerabilities

14

Attackers use vulnerabilities to produce 
exploits, from denial-of-service through to 
full remote code execution. 



How?
Automatically generate many inputs
Automatically apply them to the DUT
Monitor results

Goal: 
- High (combinatorial) coverage

15



Easier said…
“Automatically generate” – How?
“Monitor results” – what’s expected?

16



Solution: Fuzzing 
◎ SW testing technique using auto-generated inputs
◎ Input generated by “mutation engines”
◎ Expected results are “no crashes; no hangs”
◎ Best fit for testing SW that takes structured inputs (e.g. 

parsers of formats or protocols)
◎ Widely used in information & SW security industries



Why should we 
use it? 

Fully automated process

Identify potential security 
vulnerabilities

Improves coverage

Relatively easy to start

Can save your org time and 
money



Fuzzing-
sensitive bugs

Specific C/C++ bugs that require the 
sanitizers to catch: 
• Use-after-free, buffer overflows 
• Uses of uninitialized memory 
• Memory leaks 

Logical bugs: 
• Discrepancies between two implementations 

of the same protocol 
• Round-trip consistency bugs (e.g. compress 
→ decompress → compare to original) 

• Assertion failures 



Fuzzing-
sensitive bugs

Arithmetic bugs:
• Div-by-zero, int/float overflows, invalid 

bitwise shifts

Plain, simple crashes:
• NULL dereferences, Uncaught exceptions

Concurrency bugs:
• Data races, Deadlocks

Resource usage bugs (stress):
• Memory exhaustion, hangs or infinite loops, 

infinite recursion (stack overflows)



21

Potential 
fuzzing targets

• Parsers of any kind (xml, pdf, truetype,…)
• Media codecs (audio, video, vector images, …) 
• Network protocols 
• Compression (zip, gzip, …)
• Compilers; Interpreters (PHP, Perl, Python, …)
• Regular expression matchers (PCRE, RE2, libc) 
• Databases (SQlite) 
• Browsers (all) 
• Text editors/processors (vim, OpenOffice) 
• OS Kernels (Linux), drivers, supervisors, VMS 
• UI (Chrome UI) 

Etc. etc.



Types of Fuzzers

Input-seed driven Input-structure driven Program-structure driven

22



Input-seed
driven



Input-
structure
driven



Input-
structure
driven



Program-
structure
driven

Save cookie

Read cookie (if exists)

Register user



Types of Fuzzers 

Input-seed driven

Random input 
generator

Input-structure driven

Input generator aware 
of types, field sizes, 
relation between fields

Program-structure driven

Generator aware of the 
program flow 

27



Categories of Fuzzers 

Generation based
Inputs generated 
from scratch

Mutation based
Inputs are based on 
previous inputs, 
coverage data, 
results

Dumb
Unaware of legitimate 
input structure

Smart
Input structure aware 
knows how legitimate 
input looks like

White box
Fully aware of program 
structure

Gray box
Partially aware of 
program structure

Black box
Unaware of program 
structure

28

Input-seed driven           Input-structure driven         Program-structure driven



Common Fuzzers 

◉ Radamsa – mutation engine 

◉ AFL/AFLplus – input seed/structure driven

◉ LibFuzzer – program structure driven

◉ HunggFuzz – input structure/program structure driven

◉ BooFuzz - input seed/structure driven

◉ Peach - input structure/program structure driven



Easier said…
“Generate” – How?
“Monitor results” – what’s expected?

30



◎ Compiler flags
◎ Improve the run-time immunity to 

buffer overflows, out-of-array-bound 
errors, stack-based attacks etc. 

◎ Examples:
○ Sanitizers:

◉ Stack canary
◉ ASAN

○ HW architecture / instruction set
◉ CET
◉ CFI

A Diversion: 

Security 
Mitigations

When triggered: Crash the program



Question: 
What’s the expected result to 
each fuzz test case? 

Answer: 
In most cases: We don’t know…

Monitoring 
Fuzzing results



Solution: 
○ Compile with security mitigation flags
○ Run the fuzzer
○ Crash = found potential bug!

Monitoring Fuzzing results



○ Subtle bugs become deterministic crashes
○ Reproduction is simple
○ Mitigations can be used with any fuzzing tool
○ Fuzzing without mitigations lose much of the fuzzing benefits

Security mitigations’ role in Fuzzing



○ Code under test: imgstats utility, part of imscript (a collection of 
small and standalone utilities for image processing, written in C)
https://github.com/mnhrdt/imscript

○ Fuzzer: AFLplusplus
https://github.com/AFLplusplus/AFLplusplus

○ Makefile modified with: 

CC = afl-gcc -fstack-protector-strong -fsanitize=address

Example: Fuzzing Open Source code 

https://github.com/mnhrdt/imscript
https://github.com/AFLplusplus/AFLplusplus


Example: Fuzzing Open Source code 



2.
DUT Overview

37



◎ Internal FW running on an Intel 
uProcessor

◎ Connects to external entity (e.g. remote 
admin console; agent on the OS) to 
exchange information, and for 
configuration

The Embedded 
System



The DUT

Host PC

FWProtocol 

Goal: 
Fuzzing of the protocol command processing in the FW code

Remote 
admin 

console Ethernet

39

uProcessor

OS agent



The protocol

40

◎ Request-Response protocol
◎ In our system:

◉ Requests generated by the FW
◉ Responses from the admin console (or from the agent)



3.
Embedded system 
fuzzing challenges

41



Challenges

42

◎ Image size
◎ Synchronization with test machine 
◎ Coverage feedback
◎ Crash detection
◎ Monitoring tools
◎ Target isolation 



Challenges: Image Size

43

◎ Instrumenting a target code for a feedback/input based fuzzer 
increases the SW/FW image size significantly 

◎ Example: 
○ 800KB image w/o instrumentation
○ 1100KB after instrumentation



Challenges: Feedback path

44

◎ Smart fuzzers’ mutation engines require code-coverage feedback
◎ No natural channels to pass the feedback to the fuzzer

○ Require innovative methods to pass the feedback

◎ Example:
○ In-system memory allocation for 

coverage information
○ Test hooks for pulling / pushing 

the information

◎ Side effect: Even larger memory 
requirements



Challenges: Crash Detection

45

◎ Most embedded system do not have a proper crash detection 
mechanisms (e.g. dump system, monitor, debugger)

◎ Prohibited by cost, code size considerations



Challenges: Monitoring Tools

46

◎ Embedded SW/FW programs lack standard monitoring tools 
(e.g. debugger, power monitors, perf etc.)

◎ Result: debugging and determination of system states is 
extremely difficult



Challenges: Target Isolation

47

◎ A System of Systems challenge
◎ Isolating the target from the full system may be hard or 

impossible (e.g. Wi-Fi FW on IoT SoC)



48

4.
Fuzzer Architecture



The DUT

Host PC

FWResponse 

Fuzzer running 
on a remote 

console

Ethernet

49

uProcessor

Request 



Fuzzing in theory

50

◎ Wait for FW to send a request
◎ Identify the request
◎ Fuzz a response
◎ Send the fuzzed response 
◎ Monitor the FW for hangs, crashes etc.

Problem: 
○ Inefficient
○ Can’t guarantee all requests ➔ Not all responses are fuzzed



Actual Fuzzing Flow 

51

◎ Randomly pick a response
◎ Fuzz the response data
◎ Use a test hook to trigger a request for the selected response 
◎ Send the fuzzed response once the specific request arrives
◎ Sent feedback info via debug channel
◎ Monitor the FW for hangs, crashes, errors

Result: 
○ Efficient
○ All requests generated; all responses fuzzed



Fuzzer architecture
Host PC

Host 

Interface 

CLI

DUT server 

(python)

1. The fuzzer creates a fuzzed 

response (25 to choose from)

2. The DUT server identifies the 

associated request

3. The DUT server triggers the 

request via Host Interface and 

test hook in the FW; Starts a 

time-out timer

4. The FW generates the request

5. The DUT server sends the 

fuzzed response

6. AFL code in the FW sends 

feedback to the fuzzer

7. Identify “crash “ feedback

8. If the next cycle fails (timeout), 

either this or previous cycle 

caused it

9. Save last 200 fuzzed commands 

to crash folder

Fuzzer 

(C#)

1

6

5

4

3
2

3

8

Agent7

52

Crash 

folder

9

FW

uProcessor



53

5.
Results & Lessons-
learned



Productization

54

◎ Fuzzer User Manual
○ Overview
○ Setup instructions
○ FW compilation instructions
○ First level debug and repro instructions

◎ All needed code, executables, pre-requisites on a shared folder or 
source repository



Results

55

◎ Fuzzer ran for two weeks
◎ Identified one ASAN failure

○ Good news / Bad news situation…

◎ Achieved confidence in the code’s robustness



Lessons Learned

56

◎ Fuzzing an embedded system – possible, but not trivial
◎ Feedback mechanism must be designed and implemented
◎ May call for test hooks
◎ Compilation with sanitizers: limit to the code-under-test

○ Reduce binary size to the minimum needed
○ Can be controlled by CMAKE scripts

◎ Do proper documentation to avoid losing the capability
◎ ROI: difficult to assess 

○ How often / how long to run the fuzzer?
○ What’s the worth of “removed vulnerability”? 
○ As Secure Code Development improves, fuzzing may yield less results



Thanks!
Any questions?

You can find us at:
dor.levy@intel.com

michael.m.stahl@gmail.com / www.testprincipia.com

57

mailto:dor.levy@intel.com
mailto:Michael.m.stahl@gmail.com
http://www.testprincipia.com/

