
DOC

Software Test Plan
Template Guide
Michael Stahl
Intel

Welcome

At EuroSTAR, our core purpose is to help software test professionals
to achieve their absolute full professional potential and to inspire them
through community and collaboration to help each other.

From the EuroSTAR Huddle for testers wishing to learn and improve to
the annual EuroSTAR Conference, we have been bringing testing and
quality assurance professionals together since 1993.

We are delighted to present this Software Test Plan Template Guide and
the accompanying template written by Michael Stahl, who has previously
spoken at our EuroSTAR Conference.

Enjoy!

The EuroSTAR Team

Michael Stahl

Michael Stahl is a SW Validation Architect at Intel. In the last 20 years
Michael tested code for Smart TVs, graphics cards, computer-vision
applications based on 3D cameras and Intel’s Active Management
technology and Security Engine.

In his role, Michael defines testing strategies and work methodologies
for test teams and sometimes even gets to test something himself -
which he enjoys most.

Michael presented papers in SIGiST Israel, STARWest, EuroSTAR and
other international conferences and is teaching SW Testing in the
Hebrew University in Jerusalem.

You can view his papers and presentations at www.testprincipia.com

Template Download

This ebook is a guide to a Software Test Plan Template.
Click the button to download the editable template.

DOWNLOAD
FILE HERE

https://huddle.eurostarsoftwaretesting.com/wp-content/uploads/2021/12/SW-Test-Plan-template.v1.0-Public-eBook.docx

Table of Contents.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 1

Software Test Plan Template Guide

Table of Contents

Table of Contents ..1

Revision History ...3

Preface ...3

A bit of history .. 3

Acknowledgements ... 4

Disclaimers .. 4

General ..5

How to use this guide .. 5

What is a Test Plan?... 5

Guide structure .. 6

Why write a Test Plan? ... 7

Terminology .. 7

Template structure ... 7

Where to start? .. 8

Technical notes .. 9

General writing tips .. 9

Front Matter ... 10

Table of Contents .. 10

Revision History ... 10

Opens 11

Introduction .. 12

Purpose ... 12

Audience ... 13

Acronyms and Terminology .. 13

Reference Documents ... 14

Document scope... 15

Prerequisite documents .. 16

In Scope .. 16

Table of Contents.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 2

Out of Scope ... 16

Software Test Plan sections.. 16

Test Scope ... 16

Safety requirements .. 16
Test items .. 17
Features to be tested .. 19
Documentation to be tested ... 21
Units not to be tested.. 22
Integration items not to be tested ... 22
Features not to be tested .. 23

Assumptions, Dependencies, and Constraints... 23

Assumptions .. 24
Dependencies ... 24
Constraints... 25

Test Approach... 25

Test Strategy .. 25
Safety requirements test strategy ... 28
Test Completion Criteria... 28
Suspension Criteria and Resumption Requirements ... 29
Configurations coverage strategy... 29
Test Tools & Automation Strategy ... 32
Test Design Specification ... 33
Test Cases .. 39
Testability Hooks ... 40

Test Environment .. 42

Test Setups .. 42
Hardware and Lab ... 44
Software Environment / Environment configuration... 45
Security & Privacy ... 45
Test data requirements .. 45

Test Execution .. 46

Test Entry Criteria... 46
BAT Strategy ... 46
Continuous Integration Test Strategy .. 46
Regression Strategy ... 46
Compliance and Certification .. 47
Milestone Release Testing ... 47
Metrics to be collected .. 47
Test Monitoring and Control ... 48
Bug Management .. 48
Test reporting ... 49

Risk analysis .. 49

Revision History.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 3

Schedule, Project management and Staffing .. 51

Schedule ... 51

Project management ... 52

Project ownership ... 52
Coordination between test teams ... 53
Test Cycle creation and tracking... 53
Standard meetings ... 53

Staffing .. 53

Roles, activities, and responsibilities... 53
Hiring needs .. 54
External Test Resources ... 54
3rd party IP providers ... 55
Skills / Training Needs .. 55

Appendix A – Test Levels ... 56

Unit tests .. 56
Integration tests .. 56
System test ... 57
Acceptance tests ... 58

Appendix B – Relevant International Standards .. 58

Revision History

Date Revision Author Summary of Change

 29/Nov/2021 1.0 Michael Stahl eBook version

Preface

A bit of history

The content of this eBook was written while I working as a SW Validation Architect at Intel. At the time

(2017) I was leading the effort to make our product comply with ISO 26262 (Functional Safety standard -

FUSA). I made much use of work I did earlier in defining Software Test Plan templates and in teaching

Preface.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 4

Test Planning. One of the things I always struggled with was the template length. Just dumping the

template on test engineers and asking them to use it proved impractical. Testers did not know what to do

with this template. So I added explanations for each section. But then the resulting template was tens of

pages long, and the sheer length of the document scared testers and caused them to lose any appetite they

may have had to engage in writing a test plan.

With FUSA, things became even worse. The standard mandates writing Test Plans, for each test level. So

now we had to have three templates (unit, integration, system), each rather large with explanations. Not

only that: the explanation text was pretty similar in many places, so each improvement of the

explanations had to be done three times. A mess.

The solution was to create two files: One would hold just the templates sections (with bare-minimum,

one-liner explanation for each section) and a Guide, where sections are explained in more detail. What

you have in this eBook is the result of this approach: A Guide document and a Template document.

The template part contains sections for all three test levels. A correct use of the template is to remove the

sections that don’t apply, so you end up with just the sections you need for the selected level.

I admit it is still rather long. Use this is a starting point for YOUR Software Test Plan template. Remove

anything you feel is redundant and add whatever I missed. I do recommend reading the Guide text for

each section you decide to remove and consider if removing it is a good idea. There may also be cases

where you feel that certain information is important but fits better in a different place in the template.

Acknowledgements

The first version of the Test Plan template was created as a group effort in the WiFi organization at Intel.

The test plan and guide presented here were written by me. It was thoroughly reviewed by several Intel

people, many of whom have a much better knowledge and experience with functional safety than me.

The comments and contributions made by the reviewers made the template and guide significantly better.

It’s my duty and pleasure to thank the following contributors: Cosmin Munteanu; Giovanni Sartori;

Gloria Wirth; Luca Fogli and Linda Zavaleta.

In some cases, I use terms or material adopted from ideas of other people. Things I read or heard in

conferences. I added the source in those places.

Disclaimers

This eBook and the accompanying template are presented as-is: A best-effort attempt to help SW testers

with test plans development. It does not guarantee that the resulting test plan would be any good. That

part is up to the user.

Feel free to change the template to suit your situation and organization.

My experience with Functional Safety and ISO 26262 is already three-four years old (I worked on

Functional Safety in 2017-2018). I had no experience with IEC 61508, and any reference to it is courtesy

General.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 5

of the contributors. I did not invest time while editing the template and guide for this eBook publication

to ensure it is up to date with any (possible) changes introduced since 2017. So be extra careful when

applying this template to Functional Safety project. Use this material here is a starting point and check for

any changes that may have taken place in ISO 26262 IEC 61508 since 2017.

Michael Stahl

Nov’2021

Mail: michael.m.stahl@gmail.com

LinkedIn: https://www.linkedin.com/in/michaelmstahl

Web: http://www.testprincipia.com

General

How to use this guide

The guide is rather long. It’s a reference material which you are not expected to read in one seating. Use

this reference to learn what information is expected in each section of the SW Test Plan template.

Do make sure to read all the General section (the section you are reading now). If you never wrote a test

plan or never used the SW Test Plan template, not reading this part almost guarantees you will lose more

time than you saved – not to mention the frustration when you find out you did not do it right. Trust me

on this one.

What is a Test Plan?

A Test Plan is a detailed description of a test activity. It documents what is tested, how, why and the

means for doing it.

The most important part of the Test Plan are the details of the test strategy:

• How you test the item-under-test (e.g. what test techniques you use)

• Why this way is adequate to achieve an acceptable test coverage. There are unlimited numbers of

tests you can think of; the test plan explains which tests you selected out of this unlimited number

and why you think your selection is a good one.

• What configurations (platform and OS) you cover

• What tests run in different types of test cycles (e.g. BAT, regression, CI, milestones)

mailto:michael.m.stahl@gmail.com
https://www.linkedin.com/in/michaelmstahl
http://www.testprincipia.com/

General.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 6

Additionally, it contains logistics and environment information: details about the test setup and

environment; about test automation and tools you use and about the resources involved.

Reading the test plan gives the reader a good understanding on how you tackle the test task that the plan

covers.

A project usually has more than one Test Plan. First, it may have a different test plan for different test

levels (unit, Integration and system tests; for some processes – such as functional safety – these test plans

are required). For each test level you may have more than on test plan document. For example, at system

test level, there could be Master Test Plan (also known as a Project Test Plan) that encompasses all testing

activities on the project; further detail of particular test activities could be defined in one or more test

sub-process plans (i.e. a performance test plan) or in feature-specific test plans (Feature Test Plan).

A Test Plan is a Word document. It is not a list of test cases. There is of course a connection: your test

cases implement the test strategy outlined in the Test Plan.

Guide structure

In this document, the SW Test Plan template is referred to as the Template; the text you are reading now

is referred to as the Guide.

The Guide covers all the sections of the SW Test Plan template. To avoid confusion between section

numbers in the Guide and section numbers in the Template, the Guide does not use numbered sections,

but use the same section titles.

The following lists where Template sections are covered in the Guide.

• General information about the Template and about writing test plans is in the General section.

• The template’s front page, Revision and Table of Content sections are explained in the “Front

Matter” section.

• The first two sections in the Template (“Introduction” and “Document Scope”) as well as sections

common to all test plan types (“Risk analysis” and “Schedule, Project management and Staffing”)

are explained in similarly called sections.

• The “Unit Test Plan”, “Integration Test Plan” and “Master | Feature Test Plan” sections are

explained in one section of this guide – “Software Test Plan sections” – to avoid having to repeat

similar explanation for each test level. When the explanation differs between test levels, it is

clearly marked so; otherwise, the explanation is similar for all test levels.

Color code used in this Guide:

• Pink: general instructions that apply to all test plans – safety related features or otherwise.

• Green: instructions that apply to documents dealing with safety-relevant features

• Black (regular): Preface text

General.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 7

• Black (italics): Text that can be put in the test plan as-is or with slight modifications.

Why write a Test Plan?

Developing high quality software products is a non-trivial effort. Research shows that proper

documentation helps in achieving this. Additionally, if your product is for the automotive and industrial

sector, international standards mandate a strict regime of documentation, of which this test plan template

is a part.

While it seems the main reason you need to write a test plan is to make the process happy, writing a test

plan has real benefits for you (the test engineer) and for other stakeholders, such as architects, developers

and project managers. The act of writing a test plan – putting ideas and thoughts on paper about how to

test something – helps you understand better what you need to do and what preparations to make so that

you have a chance of meeting your commitments. Having a clear document describing what the test

engineer plans to do aligns the stakeholders’ expectations of “what is it we get from the test people”. It

improves the chances of getting meaningful feedback from the stakeholders and of finding test gaps or

non-intentional overlaps with other test activities.

If you do it “after the fact” – when you are already deep into the test project, the benefit is that it forces

you to review what you are doing and that it creates a readable documentation for new test engineers. If

you do it very early in the project (way before Pre-Alpha is best), you gain much more. It will force you

to think about all the details you need to plan for. It will help you get through the project in one piece.

In short: Just Do It. You can thank me later.

Terminology

Text books talk about three main software test levels: Unit, Integration and System test. The Template is

designed based on my position regarding what each of these test levels means. This may not be the same

as your view on the subject or how your team refers to different test levels. To learn more about the

definition of Unit, Integration and System test that was used when creating the Template, see Appendix A

– Test Levels. Based on this, you can decide what part of the Template fits your activities.

Template structure

The Template is designed to be used for a number of test plan documents:

• Unit Test Plan

• Integration Test Plan

• Feature Test Plan

• Master Test Plan

General.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 8

The test plan template is designed according to ISO 29119 (2013) definition of a Test Plan and as such

satisfies the requirements of ASPICE. To learn more how this templates relates to relevant standards, see

Appendix B – Relevant International Standards.

Depending on your organization, you may have separate documents for each test level or a combined

document for all test levels. A test plan document may cover a single feature, a set of features or even the

whole product.

Unless you intend to have one test plan document for all three levels (unit, integration and feature), you

need to remove from the Template the sections that don’t apply to the test plan you write. For example, if

you write a Unit Test Plan, remove sections 4 and 5 from the Template, so you are only left with the Unit

Test Plan section and the general-purpose sections.

When using the Template for a Master Test Plan, remove sections 3.0 and 4.0 (unit and integration tests

plans). Section 5.0 (Master Test Plan) will now become section 3.0, and this is your Master Test Plan

template.

When using the Template for… OK; you got the idea.

Where to start?

To avoid running out of steam before you get to the most important sections, start filling the Template

sections in the following order:

1) Test Scope

i. Unit and Integration Test Plans: Test Items sub-section

ii. Master and Feature Test Plans: Features to be tested sub-section

2) Test Approach: All the sub-sections – but start with the Test Design Specification section

3) Test setups & Hardware & Lab sub-sections in the Test Environment section

4) Test Scope: Complete the rest of the sub-sections

5) Do the rest of the document in any order you feel like

Make sure to hold a review of the plan. You will be surprised at some of the things you did not think

about and someone else did. Don’t wait until you wrote the whole test plan before asking people to

review it, especially if this is the first time you write one. Follow the recommended section-writing order

above. Once you have 2-3 items in the Test Design Specification sub-section of Test Approach, ask

someone in your team that has experience in writing a test plan to review your document. Then, when

the document is ready (version 0.3 and 0.5 - see versioning standard in the Revision History section) – do

a review with the appropriate audience.

General.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 9

Technical notes

• This template is a memory aid and a checklist. It covers a lot of aspects that are relevant, in some

projects, to testing. It includes sections required by ISO 29119 and ISO 26262. This means it

includes sections that you may see as redundant in the context of the code you are testing. This is

fine. Just write “NA” and move on with your life.

• In some cases the template requests information that in your organization is available in other

places. There is no reason to repeat it in the test plan document. Reference those other places

instead of duplicating the details.

• Don’t delete sections. Write NA. This will tell the readers that you thought about the topic of the

section and made a decision that this section is irrelevant. They can then agree… or not. It will

give your reviewers a chance to tell you about something you missed (I can already hear them:

“Oh! But this is VERY applicable!”). The template is also a memory aid for your reviewers!

There are two exceptions to this rule:

• It’s recommended to remove test-levels sections that are not covered in your test plan.

• If the help text in the Template specifically allows deletion of sections if they are not

applicable, you are OK to delete them

• In some places, there are cross-references in the Template. If you removed sections, the

references may be wrong and some of them lead to a section that was deleted. Fix that

before releasing the document. And refresh the Table of Contents…

General writing tips

The following are correct when writing most documents – not only a SW Test Plan.

• If you are writing the test plan before there is code, you will naturally use future tense to describe

planned actions (“for feature x we will use this and that test technique”). However, the test plan

continued to live after the product is coded; possibly even after the product is shipped. At that

time, it’s kind of strange to read what you “will” do. So: use present tense. For example: actions

(“for feature x we use this and that test technique”). Even if you are talking about something you

have not yet done.

• Whenever using dates, specify the month in letters, not a number (e.g. 03/Jan/2018 and not

03/01/2018). This will avoid misinterpretation between US date notation and the natural, logical

and clear notation used by us normal Europeans.

• When providing a URL, it is better to give the link to the folder or web site where the document is

and not a direct link to the document; this will save you from losing a link due to a filename

change.

Front Matter.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 10

Front Matter

Table of Contents

This is just a standard “table of contents” of Word. The only thing to remember about it is to update it

whenever you update the test plan.

- Select all text (control-A)

- Hit F9; for any popup, select “Update entire table”. You may get a number of these, depending on

the extent of the editing done

If you use any cross-reference within the document, the references will be updated as well as a result of

this action. Which is a good thing.

Revision History

Follow your company or org standard version taxonomy.

Here is one that I found useful:

Revision Description

0.1 Copy of the empty template, with a file name change. Nothing to show anyone yet.

0.3 Contains items 1-4 from the “Where to start” recommendation; enough content to scope effort;

direction identified; stakeholders and review schedule identified.

0.4 Ready for peer review

0.5 Incorporated feedback from peer review; direction confirmed, contract with other groups; can

start engineering execution

0.6 Ready for stakeholder review: all relevant sections filled in and content complete

0.7 Incorporated feedback from stakeholder review; resend for ratification

0.8 Ratified: change control started; doc baselined

1.0 Approved changes to 0.8 baseline; includes customer feedback

1.n Final “as implemented” update

Revision Date Author Description

Front Matter.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 11

Opens

List issues that are open at the time of publishing the test plan. In theory, there should not be any opens

after v0.8. In real life – for non-safety relevant items - there are. When that happens, either turn them

into an action-required list, or just keep the Opens list here and make a note how you will work around

this open until it is resolved.

For Safety-relevant features or code, you really MUST close all opens before your test plan is approved for

version 0.8.

Issue Description Owner Status

Front Matter.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 12

Introduction

This is the first text the reader will see that is actually related directly to the test subject. So this is the

place to write an overview about the product or feature that your test plan covers. Depending on the test

level, you may put here different information.

The goal of this section is that the reader, once done reading it, will know what the test plan is addressing

and have a good context to be able to follow the rest of the document. If it’s an Integration Test Plan –

give an idea of what is being tested; if a Feature – talk a bit about the functions provided by the feature

(e.g. What does it do? How is it used?). Etc.

Other information that is relevant here:

• Uniquely identify the product being addressed in this document by product name or code name.

Include the version number of the product if available and relevant.

• Provide the name of the organization that owns this document.

• For FuSa – make sure to mention the ASIL(s) assigned to the SW elements covered by this test

plan. For cases where there are different levels of ASIL for different parts of the SW covered by this test

plan, make sure to be very clear about what ASIL level is each component. An alternative place to do so is

in the “In Scope” sections. See further comments there.

Whatever you write here, it should be concise. This section should not be longer than 1 page; ½ a page or

even just a few sentences is more like it.

• When describing something that is already covered by another document (for example, a feature

may be described in detail by an Architecture document), reference that document.

Even if you do so, it is highly recommended you not ONLY reference the other document but do give a

short overview here. Just making a reference means that to get context the reader needs to first read the

reference document before continuing. This is a distraction. In many cases it means getting permissions

and reading a long document with a lot of details not needed for understanding the test plan. It is much

more useful to have here a short overview with enough details to give the reader a general context;

reference the more detailed source to allow interested readers to dig further.

Purpose

Briefly describe the purpose of this document. The test of what component does it describe? What test

levels are covered? What are the goals of this document? In many cases, you can just use the text below,

filling in the missing information (read it before using it. Make sure it’s OK for you!).

Front Matter.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 13

This Software Test Plan is used as a tool to create a coherent and well-coordinated software <Master |
Feature | system | Integration | Unit | Component| … > test strategy of the <component> feature-set by
<team name>.

When done reading this document, you will have a fairly good idea how <team> plans to conduct <test
level> testing of the <component> of <this product>, on <OS, platforms>.

If this document is part of a series of documents that are related to each other, consider mentioning this.

If this document is (in part) created to comply with a standard, consider mentioning that too.

Example (for relating to a series of documents and to a standard):

This test plan is a part of a series of documents that support the ISO 26262 requirements for the

Mechaton-AD SoC used as a Safety Element out of Context (SEooC) for the Advanced Driving Assistance

Systems (ADAS).

Audience

This section is a requirement of ASPICE. It must be in the test plan document even if you think it does

not add much benefit (well, it doesn’t, does it... but we all want ASPICE to be happy, right?). In most

cases, the text below is generic enough (and correct enough) to be used as is. Note the addition of safety

auditors for safety-relevant code.

The audience for this document are architects, developers, testers, project managers as well as safety
auditors.

Add other audiences if that’s how your org works.

Acronyms and Terminology

Provide definitions for acronyms and terminology used in this document. Use only those which are in this

specific document; do not include any redundant terms – this is not a replacement for Wikipedia.

Sort alphabetically.

If you have a document that contains all the terms and acronyms, you can just reference that document.

While a possible and acceptable approach, it does mean that the reader of THIS document will need to

consult another document to get terms and abbreviations explained. Quite annoying. Decide what makes

sense in your case and how much you want to annoy the reader.

It is OK to assume a specific term is so well known that it does not need to be listed here (“OK” is a good

example). However, if any of your reviewers ask to add it in – don’t argue. Just add it in.

As an example, the table below includes acronyms and terminology used in the Guide.

Front Matter.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 14

A summary of terminology used in this document is outlined in the table below.

Table 1. Acronyms and Terminology

Term Description

ASIL Automotive Safety Integrity Level. One of four levels to

specify the item's or element's necessary requirements of ISO

26262 and safety measures to apply for avoiding an

unreasonable residual risk, with D representing the most

stringent and A the least stringent level (ISO26262-1).

BAT Build Acceptance Tests; also known as “Smoke Tests”

CI Continuous Integration

FuSa Functional Safety.

FTP Feature Test Plan

MTP Master Test Plan

OS Operating system

OTS Organizational Test Strategy. A document explaining “how

our team does testing”. Proposed by ISO 29119 but not

mandated by ASPICE or ISO 26262. See more in “Reference

Documents”.

SR Safety relevant

Test Level Unit test, Integration test, System test are all “test levels”.

Test Module See explanation in “Features to be Tested” section

Reference Documents

Provide a list of documents which are referenced in this document or were used as input when creating

this test plan. Identify where each document can be found and the revision used.

The Mnemonic is a short-hand for the document name. It can be used within the test plan to identify a

specific reference without having to write its full name.

Document scope.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 15

One document that is worth referencing if you have it, is the Organizational Test Strategy (OTS). See

Appendix B – Relevant International Standards where the OTS is explained in more details. Whenever

the activities you do for this test plan follow the generic processes of your organization, you can reference

the OTS and save re-documenting things.

ISO 26262-6:2018, sections 9.3.1 and 10.3.1 list the pre-requisite information that should be available

when writing a test plan. Consider referencing here the pre-requisite documents you actually used when

developing this test plan. Not a must.

The entries in this table are examples of documents you may want or need to reference. Delete / replace as

needed and add your own references.

Table 2 Reference Documents

Mnemonic Document Document Location

[SAS] Software Architecture Specification http://....

[MTP] Master Test Plan http://....

[PRD] Product Requirements Document http://....

[OTS] Organization Test Strategy http://....

[REQ] Requirements document (or URL to

database)

http://....

[ChMgt] Change management process / strategy

document

http://....

[BugMgt] Bug management process http://...

[C&C] Testing of ISO 26262 Configurable

Software

http://testprincipia.com/presentations-

and-papers-on-software-

testing/#heading12

Document scope

Section 2.0 in the Template was added specifically for proper FuSa documentation. It lists the relevant

sections in ISO 26262 and IEC 61508 whose requirements are addressed by the test plan.

http://testprincipia.com/presentations-and-papers-on-software-testing/#heading12
http://testprincipia.com/presentations-and-papers-on-software-testing/#heading12
http://testprincipia.com/presentations-and-papers-on-software-testing/#heading12

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 16

Prerequisite documents

In Scope

Out of Scope

For features that implement safety relevant (SR) requirements, just leave all these sections with the

information already provided in the Template.

For features that don’t implement SR requirements, delete the contents of each sub-section and write

there “NA” instead.

Software Test Plan sections

Test Scope

This section provides information about what is covered – and what is not – by the test plan. Accurate

information here will avoid misalignment between what the validation team commits to cover and what

other teams assume the team covers. It also allows reviewers to note if test activities committed here are

also committed by other teams. In these cases, duplication of effort may be avoided – or at least be done

consciously.

Specifically for Integration Test Plan, explain here what Integration Tests mean in your organization (See

discussion in “Terminology”).

Safety requirements

If the code under test implements no safety requirements, write here “NA”.

This section is mandatory to fill in when the code does implement safety requirements, for which this test

plan will be assessed according to 26262.

List, or give reference to the list of the safety requirements implemented by the code under test. Later in

the test plan (in the “Test Strategy” section), you will discuss if and how these requirements get special

attention.

If your requirements are managed in a database (I sure hope they are) – give a URL to the DB and how to

get the requirement list covered by this test plan (e.g. give the URL to a query).

For ISO 26262 compliance, ensure that this section (together possibly with the “Test Items” section)

covers the following:

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 17

• What are the work products and/or safety integrity requirements to be verified? [ISO 26262-

8:2018; 9.4.1.1a]

Test items

Unit test:

Enumerate the code units that are in scope of this test plan. These would be the code files that are tested.

Usually, since we don’t want to have here a long list of files, just give a general name, and a URL to the

relevant folder in your code repository.

For Safety related code, add also the path to the Safety Plan location.

Example:

Table 3 Unit Test Items

ID Unit Path

Item.1 XYZ app //…

Item.2 ABC library //…

Integration test:

Enumerate test items (executable binaries) of the product that are in scope of this test plan.

Test items include the pieces of the software whose integration with one another (or with the system) is

the target of this integration test plan.

Examples depend on how you define “Integration test”:

• Two or more separate modules of a large system

• A library and the code that use it

• A new feature added to an existing program module

• Code whose interaction with the HW is the goal of this test plan

• Code whose interaction with the OS is the goal of this test plan

• Code that is tested by the CI system

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 18

Integration tests need to cover the following (you can opt to cover some or all of these in the Feature Test

Plan):

a) Show that the code does what was specified in the software architectural design

b) The hardware-software interface (unless done by another team. E.g. the HW team; if so, state it in

the “Test Scope” section).

c) Verify that non-functional requirements are met

d) Verify correct behavior in case of erroneous inputs

e) Verify the product has sufficient resources to support the functionality

f) Verify the implemented safety measures

Example (when your definition of integration is “interfaces testing”)

Table 4: Integration Test Items

Test Item Interfaces

Services.dll dll - OS APIs

 dll - application level APIs

 dll – remote authentication server REST Messages

hid.sys SW – HW (via shared memory registers)

 OS – driver (using IOCTLs)

Example (when your definition of integration is “functionality of a part of the code”)

Test Item Test targets

Services.dll Interfaces with the OS, application and remote server

 Basic functionality

 Specific performance aspects

Feature

Test items include all pieces of the software that make up the product (e.g. software binaries, dll files,

configuration files). If the product is provided to the customer as sources, the source files and any related

files such as build scripts or make-files should be included in the inventory of test items. User

documentation and the installation package (if exists) should also be listed.

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 19

Sometimes the binaries under test are those that get installed by the software’s installer. In this case, there

is little benefit in listing all the binaries here and you can just list the installer and mention that the Test

Items are the resulting installed files.

Specify version numbers if available. Where applicable, specify the "main focus area" that will be tested in

each Test Item in the context of this test plan.

Example:

Table 5: Master|Feature Test Items

Features to be tested

This section appears only for Master | Feature test plan.

This is a breakdown of a high level feature (or: “component”) into “Test Modules”. The test module names

and the details of the teams responsible to test them are listed in a table. In some cases, a single test

module covers a number of aspect and these are listed as “Additional breakdown”. Later in this document

(in Test Design Specification) you will add more details about each test module – e.g. the test strategy.

Teams can decide that a certain Test Module must exist in each FTP (e.g.: decide that a “Security” test

module must exist in each test plan). In such case, you may want to create a local version of the template

for your organization and already have it populated with the test modules you mandate.

Each test module focuses on a specific aspect of the component (a feature or a capability). As a goal, a test

module should be:

• Well differentiated and clear in scope (*)

• Balanced in size and amount of testing (*)

(*) Not always possible, but a good goal

Note: The term “Test Module” and its definition above was adopted from Hans Buwalda.

Add test modules to cover special test areas or test types that are not feature-specific (e.g. installation).

Add test modules for non-functional aspects (performance, power, CPU/GPU utilization, security testing,

load, stress, reliability, MTBF etc.)

Add test modules for any certification, compliance requirement or regulatory requirements (e.g.

Microsoft’s tests (known as WHQL); Bluetooth certification).

Test Item Description & version Main focus area

ABC DLL Authentication and Access control engine Authentication

XYZ Driver Device driver (User mode) Authentication support

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 20

If the feature is tested in pre-silicon stages, add a pre-silicon test module where you can explain the setup

and testing done in pre-silicon stage.

Add or remove columns with additional data as fits your case. The important part is that the list includes

all the “moving parts” of the component and that if something is NOT in this table it means you are not

planning to test it.

If the table of features becomes unwieldy (too wide to manage in Word), consider embedding an Excel

table here. But try to manage with a simple table – it makes your document readable.

Unless covered by an Integration Test Plan and during integration tests, Feature-level tests need to cover

the following:

g) Show that the code does what was specified in the software architectural design

h) The hardware-software interface (unless done by another team. E.g. the HW team; if so, state it in

the “Test Scope” section).

i) Verify that non-functional requirements are met

j) Verify correct behavior in case of erroneous inputs

k) Verify the product has sufficient resources to support the functionality

l) Verify the implemented safety measures

The example in the table is for a 3D scanning application.

Table 6: Features to be Tested

Feature / Capability Additional breakdown Owning team

Features

Scan Face CVLab

 Torso CVLab

 Object CVLab

 Scan configuration controls CVLab

 Re-acquisition CVLab

Edit Crop CVLab

 Erase CVLab

 Solidify CVLab

 Smooth CVLab

 Trim CVLab

 Touchup CVLab

 Edit configuration control Acme Test house

Save, Upload, Print Save Acme Test house

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 21

 Upload Acme Test house

 Print Acme Test house

 Configuration controls Acme Test house

Application flows Main flow Acme Test house

 Alternative flows Acme Test house

Documentation User Manual Acme Test house

KPIs

Accuracy After capture

After each edit operation

CVLab

Performance During Capture

During Edit

CVLab

Quality Attributes (non-

functional)

Robustness Lack of system resources Acme Test house

 Missing dependencies Acme Test house

Power states Standby Acme Test house

 Hibernate Acme Test house

 Reboot Acme Test house

Installation Install Acme Test house

 Uninstall Acme Test house

Do not turn this table into very detailed breakdown of every minute item that needs to be validated. Such

list is too detailed for a test plan and is hard to manage in Word. It’s helpful to make such a detailed

breakdown, but using Excel. If you did such a list in a hierarchical style, often the headers for a hierarchy

of details will fit nicely here as Test Modules.

At MTP level, the “Feature” column is for listing the high level features of the product. The test plan for

each of these features will be detailed in a separate Feature Test Plan.

At Feature level test plan the “Feature” column is used for listing of Test Modules.

The “owning team” information is of special benefit when testing is split across more than a single team.

Documentation to be tested

This section is relevant for Master or Feature test plan only.

State what documentation is delivered with the product and needs to be validated.

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 22

Examples:

• API manual

• User manual

• Get Started manual

In the context of test plan, when we say “documents to be tested” we specifically don’t mean “ISO 26262

Work Products”. We mean documentation that users get as part of the product and contain instructions

how to use or install the product. If these documents are listed in the Software Verification Plan, you can

just reference the plan. Otherwise, list the documents here.

Units not to be tested

Identify any code that is in the “test items” folders, but will not be unit-tested. Give an explanation why

this is OK. See examples in the table below.

Table 7: Units not to be tested

Code that will not be unit-tested Reason

Common .h files used by the FW

Update tool

Covered by the OS Core team

Service routines called by the FW

Update code

Stubbed out by the unit test tool

Files in folder XYZ Not to be included in this release

Files in folder XYZ Third party code software that will not be tested by

our team

Files in folder XYZ Unit-tested by other team at your company

Integration items not to be tested

Identify any significant items that are not tested during integration test. List only stuff you are concerned

that, unless stated clearly, stakeholders will assume are covered by your team. Explain why these items

(interfaces / areas / items / modules) are not covered by you. See examples in the table below.

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 23

Table 8: Integration items not to be tested

Modules not to be tested Reason

Mouhid.sys driver-HW Already tested thoroughly on previous release; no code

change done on this driver for the current project and no

change to the HW device.

Module X Not to be included in this release

Module Y Low risk, has been used before, unchanged in the current

release and is considered stable

Module Z Tested by other team at the company

Features not to be tested

Identify any significant item/features/configurations that are not tested. List only stuff you are concerned

that, if not stated clearly, will be assumed to be covered by your team.

Explain why these features are not covered by you. See examples in the table below.

Table 9: Features not to be tested

Feature / Capability that will not

be tested

Reason

User Experience Covered by the Ux team in the US

User Manual Covered by SSG

Localization No localization is planned for the current release

QoS support Not included in the release for this product

HW/SW interface Tested by the SV team

Feature X Not to be included in this release

Feature Y Low risk, has been used before and is considered stable

Feature Z Third party software that will not be tested by our team

Feature W Tested by other team at your company

Assumptions, Dependencies, and Constraints
The borderline between Assumptions, Dependencies and Constraints is not always clear. As an example

take this entry:

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 24

“Successful execution of this test plan depends on the availability of an Acme Bus Sniffer by pre-alpha

time.”

Depending on the situation and how you word it:

• It is an assumption: I assume that the Acme company, who committed to have the tool released by

pre-alpha, meet their deadline

• It is a dependency: I can’t start before I have this tool

• It is a constraint: I must use the Acme sniffer because it’s the only one that is capable to measure

what we need to measure

A general guideline is to have as a dependency something that is a deliverable of another team (internal to

your company or external), while assumptions are for things that are pretty much out of our control (e.g.

“WHQL test suite for this new technology is available from Microsoft before WW X”).

Constraints are things that narrow the choices you have and forces certain limits. These limits can be on

timelines and resources. They may also be limits on choice of test approach, strategy and design.

The important thing is to mention this item as something that progress is linked to. It’s not worth

spending time arguing if you put it in the right category.

Assumptions

Identify key assumptions and activities beyond your control upon which successful execution of this test

plan depends.

Examples:

• Availability of software or tools from an external resource

• Access to 3rd party code

• Availability of <some new hardware> by <some work-week>

• MC/DC coverage feature is available in the next release of the code-coverage tool

• FuSa qualification of the tool used for unit testing is available at the time we start using it

• Support for legacy Microsoft operating systems is not required

Dependencies

List dependencies on other groups. This includes pre-requisites and any other dependencies.

Examples:

• Resources for this project are available after Project X is complete. If major slips to Project X

happen, it will impact the resources allocated for this project.

• Availability of simulator or emulator for the HW

• Test tool ABC needs to be updated by team Y to run on the new platform

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 25

Constraints

Identify constraints that bound the scope of this validation plan. That is, it narrows the choices you have

and forces certain limits on timelines or resources.

Examples:

• Unit tests design must allow execution by the Nightly Build system

• The maximum size of the instrumented code generated for code coverage is 1.5M, to be able to fit

into the available FW flash memory

• Unit tests must be created using the LDRA tool suite

• The certification test-house selected for this project accepts submissions only on the first week of

every month

• Access to external equipment is available only during weekends

• Due to safety regulations, only 3 testers can be in the lab at any given time

Test Approach

Test Strategy

In this section you discuss the general strategy for testing your code.

Unit test

If the general strategy is similar to that of the [OTS], this section can be rather short. If you deviate from

the general strategy, explain here how and why.

Explain the main decisions you made that influence the whole test activity:

Example for stuff to discuss here:

• Do you test in complete isolation or only partially? (E.g. driving inputs, but counting on

dependencies to be available and working).

• What is a unit? (Function? Class? File?)

• Who develops the unit-tests?

• When are unit-tests run and by whom?

• What is the tool or framework you are using?

• Do you use code injection or fault injection techniques to activate certain area of the code?

• What are the code coverage goals?

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 26

If there is no clear coverage goal, which is probably the case for a non-FuSa code, state this clearly. In this

case, the Test Completion Criteria becomes that much more interesting… how would you know when

you are done if you have no clear coverage goals?

It is possible that the answers to the above examples differ for different parts of your code. For example,

you may select the same approach to all user-mode code (applications; user-mode drivers), a different

approach to kernel level and yet another for FW.

Generally speaking, you won’t have a per-feature unit level strategy except in special cases. If you do,

state so clearly. Similarly, if you have different strategy for safety features VS non-safety features, state so

clearly.

In the (unlikely) case where the unit test strategy differs between different features or if you want to

clearly separate the strategies for different parts of the code, consider adding sub-sections to the “Test

Design Specification” section. See this section in the Integration or Feature test plans templates and

decide if adopting similar breakdown works better for you.

Explain the demarcation between unit and integration (or even feature) tests. Is there a conscious overlap?

What may be naturally expected to be tested at unit level, but you decided to leave to later test level?

Why?

Integration test

If the general strategy is similar to that of the [OTS], this section can be rather short. If you deviate from

the general strategy, explain here how and why.

There are cases where this section is all you need to clearly articulate how you do integration tests. This is

for cases where the overall strategy is the same for the integration of all the parts (modules; components)

that together make your delivery.

If you have a number of different strategies, depending on the integration items, you can talk generally

about them here and go into further details in the Test Design Specification section. For example,

integration testing may use different tools and different test techniques to test a SW-HW interface and to

test an interface to a remote server via REST API. Give a general overview in this section, before diving

into further details in the Test Design Specification sections.

Explain the demarcation between integration and feature tests. Is there a conscious overlap? What may be

naturally expected to be tested at Integration level, but you decided to leave to Feature test level? Why?

Master | Feature test

Master test

Change the section title from “Master | Feature Test Approach” to “Master Test Approach”

Explain the general approach your team employ to test their part of the project. In many cases, this is

already covered in the [OTS] so you can just reference it here.

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 27

Additionally, describe your team’s role in the overall picture of this project validation effort. Are you the

last team to test this project? Maybe you are just contracted to cover specific areas? Describe this in plain

language so that other teams (and the project managers) know what you think you are supposed to do for

the project and can discuss with you if they think you got it wrong.

Feature test

Change the section title from “Master | Feature Test Approach” to “Feature Test Approach”

Describe the overall test strategy for the feature at hand. If the strategy is not different than the one

described in the Master Test Plan (MTP) or in the OTS, you can reference it here instead of repeating

everything. Note however, that even when the test strategy for a feature follows the strategy described in

the MTP or OTS, you still need to say something about the strategy at the Feature level – even if it is just

to explain how it aligns with the higher level strategy.

If the test strategy differs between Test Modules, elaborate more on the test strategy in the Test Design

Specification sections. A common situation is that the general test strategy tells part of the story and a

more detailed explanation of how this generic strategy applies to each Test Module is covered in the Test

Design Specification sections.

Example for stuff to discuss here (applies for both Master and Feature test plans):

• Primary focus of testing (e.g. functional testing; reliability testing; PCs; phones; Android OS;

usability; accuracy). There are probably more than just one vector of focus.

• The type of test approach you use and why this applies best here (e.g. use case testing; risk-based

testing; requirement testing; regression-averse; model-based; etc.)

• Metrics (general description only; no need to explain the metrics in details here – there is a special

section for it)

• Type of test techniques employed to generate the test cases

• Pre-silicon test approach: what is tested and what is not; how is the HW simulated.

No need to cover automation strategy here (it has its own section) – but you should make a comment on

manual VS automated testing – how much you plan to automate.

For small projects, it may make sense to generate one test plan that covers both the overall testing picture

(“master test plan”) and the more detailed, per-feature test strategy. In these cases, use this section for

both – first give an overall, project level strategy, then refer to specific features if the test strategy for

them differs from the project-wide strategy.

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 28

Safety requirements test strategy

If there are no safety requirements in this feature, put “NA” here and remove all subsections to avoid

clutter.

For Safety related code or features, there is plenty that you need to provide in this section. The ISO

26262-6 standard contains several tables that enumerate testing methods and the ASIL level that requires

each. The template contains references to these tables.

Note that you may have situations where it is proper to add the ISO 26262 tables again (or only at) the

Test Module level. This is for cases where one type of test technique is applied to certain aspect of the

tested code, while for a different aspect, a different test technique is used. If you go this way, make a note

in this section that “further details that apply to each test aspect of the code are detailed in section X”.

Test Completion Criteria

Also known as “Exit criteria”.

How would you decide that you are done testing? The general answer is: When the needed coverage is

achieved and all tests are passing. So if you don’t specify it elsewhere, this is a good place to declare the

coverage goals.

Unit Test

Examples for Pass and Fail criteria for unit testing (Select those that apply and/or write others similar to

these):

• 100% of the unit test cases pass

• All unit test cases dealing with critical functionality pass

• All medium and high severity defects are fixed

• Sentence coverage is 100%

• Sentence coverage is above 90% and all discrepancies explained

• Branch coverage is 100%

• Modified Condition/Decision Coverage is 100%

Integration test

Example for Pass and Fail criteria for integration testing (select those that apply and/or write others

similar to these):

• 100% of the integration test cases passed

• All integration test cases dealing with critical functionality passed

• All high and critical severity defects are fixed and verified

• Function coverage is 100%

• API coverage is above 90% and all discrepancies explained

• Call coverage is 100%

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 29

• Requirements test coverage is 100%

Feature test

Example for Pass and Fail criteria for feature testing (select those that apply and/or write others similar to

these):

• 100% of the test cases were executed and 97% of them passed

• All test cases dealing with critical functionality passed

• All critical and high severity defects are fixed

• Requirements test coverage is 100%

• A certain number of test cycles with incoming bug count trending down

• A certain number of test cycles with no new critical bugs

If your company has a standard set of Release Criteria, you can just reference that, at this test level.

Suspension Criteria and Resumption Requirements

In case you have such criteria, list it here. In my experience, the situation is usually a case-by-case

decision, made by validation managers in consultation with the validation feature owners and the

program manager.

Note that for ISO 26262 compliance you may not be able to get off so easily and will need to list

something more concrete. Consult the expert in your company.

Examples for Suspense criteria:

• A Change Request is approved that requires significant architecture, design or code changes.

• The amount of bugs in a specific part of the code is above a certain threshold, rendering further

testing useless since the code will anyway need to go through significant changes

• The system is too unstable (e.g. resets itself every 2 minutes) for proper use of the testers’ time.

• The released version fails the Build Acceptance Tests

Resumption requirements are usually the activities needed to make the suspension criteria pass.

Configurations coverage strategy

Start with just listing the platforms that are used in testing, the OSs and (when applicable) the SKUs.

Continue with a list of the combinations that are covered. This can be either an exhaustive list, a verbal

explanation, or a URL to another file containing the full list.

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 30

Then explain the strategy and the considerations used when specifying the covered combination list.

The coverage may be different for each test level.

• For unit tests, especially when tested in full isolation, this section may be pretty much redundant

as the tests are executed on whatever platform that is available to the developer of the CI

automation. If the code is different for different OSs, this section becomes more relevant.

• For Integration test, it is common that testing is done only on one platform – especially when

testing SW-only interfaces. If you are testing interfaces with the OS, you may want to cover the

target OS list. If you are testing integration with HW, you may want to cover all the relevant HW

flavors.

• At Master Test Plan level, list all the combinations covered and specify the priorities among them.

This gives the Feature Test Plan writers a direction when doing their own prioritization.

• At feature level, the decision if to cover all or just some of the combinations mentioned in the

MTP is feature-dependent. When covering all the combinations, it is common to select some

combinations as the primary ones and these get more testing. If the coverage strategy detailed in

the Master Test Plan is adequate for a feature at hand, it’s enough to reference the MTP.

Platforms and OSs coverage

Platforms

List the platforms you test on. List also SKU if relevant.

OS

List the Operating systems you test on (with version number where applicable).

Example:

• Windows 10 (from build number 10538)

• Android 11.0.0

Platform and OS combinations coverage strategy

If you have more than a single Platform-OS combination, you need to decide how testing will be spread

over the combinations. The brute-force option is to test everything on all combinations and in some cases

this is the right approach. But this could mean a LOT of testing – especially if you have many

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 31

combinations. For situations where covering all combinations becomes more testing than you can possibly

execute, you have to define some strategy – what gets covered on which system configuration.

If your product has SKUs, you need to describe how you deal with that as well. Is there a primary SKU? Is

the feature discussed in this test plan not impacted by SKU, therefore it does not matter? Etc.

A common approach is to select a “primary” configuration and this is the one that sees most of the testing,

while other configurations are being tested on features you know (or suspect) behave differently on these

combinations. If there is no such expectation (that is, you think the behavior will be the same on all

configurations) then other configurations will be getting a low level of sanity tests just to make sure you

don’t have a glaring, configuration-specific bug.

In other cases you may be able to cover all combinations by covering different combinations each test

cycle.

Yet another approach is to test some of your test modules on many configurations, and some only on one

or two.

It is also possible, for the case of Trunk Based development, to rely (for coverage) on tests done on other

projects altogether, provided they use the exact same code as your project does and when the features are

HW independent. This will reduce the level of testing done on this project. This of course calls for tight

coordination with the other projects teams to ensure you don’t open gaps.

The exact test effort distribution over configurations is dependent on your feature set and the program

goals – and this is what you need to discuss in this section:

• What combinations you will cover

• How much testing on each combination

• The rationale behind these decisions

 Sometimes the same platform has a number of configurations that need to be tested (e.g. RAM,

Graphics, Camera version and any other HW or SW requirements for the platforms). If this is the case,

list these configurations, and what combinations of platforms - configurations - OS you cover in your

tests.

 If there are many Platform-OS combinations with much detail, consider adding a table here, or even

embedding an Excel sheet.

 For Feature Test Plan: Some projects may have the configuration discussion covered in the Master Test

Plan; in these cases you can reference that document and just note here if some configurations are not

relevant for this specific Feature Test Plan.

[C&C] is a good reference in case you have no experience in defining a test strategy for many Platform-OS

combinations.

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 32

Software configuration and calibration coverage strategy

This section is mandatory for code that includes safety requirements. It is worthwhile thinking about the

topic even if your code is not safety relevant. [C&C] provides a suggestion for test strategy of the software

configurations and calibration parameters.

One common approach for creating different flavors of a product, using a common code base, is what ISO

26262 refers to as “Configuration”. These are, for examples, compiler settings which would include or

exclude certain parts of the code in the compilation. The resulting binaries are obviously different.

On top of configuration – which impact the actual binary of the product – ISO 26262 refers to

“Calibration data”. These are the settings applied to a binary and control its behavior. A simple example is

the enabling or disabling of “line number” feature in a text editor.

Per ISO 26262, there are four levels of verification:

• Verification of configuration data

• Verification of configurable software

• Verification of configured software (the result of applying configuration data to a configurable

software)

• Verification and validation of software (the result of applying calibration data to a configured

software)

Before discussing the coverage strategy for Configuration and Calibration, first list what configuration and

calibration data are relevant to the code under test and what combinations are covered. List all values or

reference the “Configuration data specification” and “Calibration data specification” ISO 26262 Work

Products. After listing the data and the combinations that are covered, explain why these combinations

are covered and why the risk of not testing other combinations is acceptable.

Explain how the four levels of verification are covered. It is possible that this is already covered in the

OTS, so reference that document if relevant.

 To get the full story on Configuration and Calibration, see ISO 26262-6:2018 Annex C.

 See [C&C] for a proposed test strategy for testing Configurations and Calibrations

Test Tools & Automation Strategy

What is the overarching automation strategy for unit test? For Integration? For the feature that this test

plan cover? For the whole project (for MTP)?

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 33

Enumerate the test tools you intend to use and explain shortly what they do. This may include items such

as internal frameworks, specific tools written to test your feature, specific 3rd party test harnesses or tools

etc. In many cases this will be the same as in the OTS, so just reference that document.

Will you need to invest money or resources?

Clearly state which of the tools are existing ones and which need to be developed for the implementation

of this test plan.

Unless the OTS covers the use of project-level tools such as bug tracker, requirements management tool,

etc., they will need to be mentioned here.

For ISO 26262 compliance, ensure that this section covers the following:

• What tools will be used for verification (if applicable)? [ISO 26262-8:2018; 9.4.1.1f]

• For FuSa, the SW tools used in the validation process may need to be qualified. See ISO 26262-6:2018,

Section 11 and 12.4. This would be covered in the Tool Qualification work products – but keep this in

mind and ensure these tools are listed in the tool classification list and that you know if they need to

be qualified.

Specific information relevant to Unit Test Plan

What overarching automation strategy are you using the Unit Test? The simplest thing is that every

developer runs their own tests on their development machine. But you can also opt to run unit tests as a

pre-check-in gate on in CI.

If you collect code coverage information, are you collecting it for each test or for all tests together?

Collection for each test probably calls for some automation of saving intermediate files and for running

the analysis. You will also need to have a setup where all the tests are running together, so that the

overall coverage can be measured. Alternatively you will need to set up a reporting mechanism where

each developer reports coverage and evidence, so that the project-wide coverage numbers can be

generated.

Test Design Specification

This section provides the information that ISO 29119 specifies for the Test Design Specification

document. It contains also some of the information that is in the 29119 Test Case Specification document.

The Test Design Specification section contains a varying number of Test Module sub-sections, each

dealing with a specific aspect of the product. The partitioning of the code-under-test into different aspects

vary between unit, integration and feature test plans. See further explanation on each test level, below.

At Master Test Plan level, this section is in most cases “NA”, as test design is usually different for different

features.

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 34

Unit test

For unit tests, the “Test Design Specification” section may have only one Test Module, as usually tests

follow the same approach for all the code. If this is not the case, consider adding additional Test Module

sub-sections as needed.

Unit tests are intended to verify that the software units:

• Comply with the software unit design specification

• Comply with the specification of the hardware-software interface

• Deliver the specified functionality

• Do not suffer from unintended functionality

• Are robust (deal correctly with all error cases or invalid inputs)

• Have sufficient resources to support their functionality.

The description should be general. There is no need to give details on each test, only about the type of

tests you employ. In many cases this will be very generic and applicable to any project.

Integration

Depending on how you define “integration tests”, the content of Test Modules would vary.

In the context of interface testing, a Test Module would detail how tests are designed for a specific type of

interface. The same test design approach would be used for this type of interface – wherever it appears in

the product.

If your org uses Integration Tests for something other than interface testing, make your own definition of

what each test module covers. In some cases the definition defined for Master | Feature Test Plan may be

right for you – in which case you should seriously consider using the Master | Feature Test Plan as your

template. If all integration tests are designed in the same way, you may have just one Test Module entry

in the Test Design Specification section.

Feature

At Feature level, write a Test Module section for each line item in the “Features to be tested” table.

<Test Module #1>

The name of the test module.

Unit and Integration

The name should give the reader an idea what type of unit or integration testing is covered in this

module.

Example (for integration tests focusing on interfaces):

• API

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 35

• Windows IOCTLs

• REST interface

Feature

The name of the test module. This should be one of the entries in the “Features to be tested” table.

Description

A short description of the test module: What aspect of integration tests or the feature is covered in this

Test Module. Two-three sentences are usually enough.

Test Strategy & Validation Method
Describe the method used to validate the aspects assigned to this test module.

When done reading this, the reader will know how you selected the specific tests you have from the

infinite number of existing tests – and why you decided to go this way; why you think this selection gives

good coverage at an acceptable cost and effort.

For ISO 26262 compliance, ensure that this section covers the following:

• What techniques/methods will be used for verification? [ISO 26262-8:2018; 9.4.1.1c]

• Why are the verification methods planned adequate for the verification activity? [ISO 26262-

8:2018; 9.4.1.2a]

• What are the specific methods/strategies/activities that will be used for verification of the

correctness and consistency of the work product with respect to its input? Why were they chosen?

[ISO 26262-8:2018; 9.4.2.1]

Unit test

The text in black italics below is a good starting point for strategy and validation methods for different

unit test types. You can opt to list all test types together (only one Test Module under the “Test Design

Specification”, with possibly some sub-Test-Module sections) or you may use the structure of Test

Modules to discuss each test type separately and in more details.

Input validation

Each function is tested for correct behavior with both valid and invalid input values. When relevant,
these values are selected to be at the boundary values of the input parameters equivalence classes. In this
context, global variables in use by the unit-under-test are also considered “input”.

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 36

When using boundary values to select test inputs, each input parameter is tested at the boundaries while
the other input parameters (if exist) are at nominal values.

Error codes

Specific error cases are generated, to ensure that the correct error code is returned in response. This
covers both errors resulting from invalid input (the result of input validation by the code-under-test) and
errors returned from functions called by the code-under-test. Stubs or mocks of the called functions are
used to simulate these error cases.

System calls

For positive tests, system calls are generally used as is (not mocked), so that access to the file system and
system resources other than the HW under test are available. Some special cases may require replacement
of a system call with a mock.

For error codes tests, system calls are mocked to create the desired error situation.

Functionality

Tests are validating that the functionality of the unit under test is as defined.

Integration and Feature tests

Describe the methods and test techniques used to validate the aspects covered by this test module. If there

is no specific thing to say about this module (that is, you use the same approach already explained in the

Integration | Feature Test Strategy) you can be very brief here – as brief as “Follow the same approach as

outlined in the Integration | Feature Test Strategy section”.

Mention any specific considerations and how they are addressed.

If you have special debug or testability functionality, explain how you verify that this functionality works

before using it in testing and how you ensure (test!) this functionality is removed or disabled in the final

product.

If you use specific test techniques in the test design for this test module, specify which and how the

techniques were used to create the test list. Explain why this is the right test technique to use.

Explain what validation methods you apply (e.g. how the tests are executed; how the results are analyzed

to decide the test outcome; do you use automated comparisons; manual verification; post-processing of

any sort; etc.)

When you cover a combination of inputs and environment variables and need to deal with “combinatorial

explosion”, explain the method you used to achieve adequate coverage (e.g. all-pairs; base choice, etc.).

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 37

For flow testing: why did you decide to cover certain flows and not others? This is especially important

for tests that are calling APIs using a certain order; if a calling application may achieve the same

functionality using different API call order you need to decide what API call flows are covered and what

are not.

Sub-Test-Module A

Sometimes a test module includes many items and it makes sense to have further sub-sections here. If

needed, add Sub-Test-Modules. If you have “Additional breakdown” in the “Features to be tested” table

and each of the items in the “additional breakdown” is a rather complicated item by itself, it’s a good

indication you need Sub-Test-Modules.

• In most cases there is no need for sub-feature breakdown. In this case remove this sub-section and

continue with “Test Steps”

Sub-Test-Module Test Strategy

Add details if the strategy is different than the one listed for the whole test module. Otherwise just write

“No change from the Test Module strategy”.

Test Steps

In most cases, when the partition into Test Modules was selected correctly, the module’s tests will all look

more or less the same, with the difference being in the actual input values used and the expected results.

So the “test steps” are really a generic description; all the tests for the Test Module will follow the same

steps.

If you find that the tests don’t follow the same generic steps – you may have lumped more than one aspect

of the feature into this Test Module. Maybe it makes sense to split it into more modules? In some cases

further splitting makes sense, in others not; do your own thinking and decide. You can opt to keep the

module intact and have more than one generic set of test steps. No big deal.

Be extra short here. Describe the tests in very few words (e.g. "Apply invalid values to each API input;

verify correct error code") – no need to write actual steps in most cases. When it feels natural to write the

test description as more detailed steps – go ahead. But do keep it short!

Use a table if it helps.

Specify the test environment to be used (use the names you defined in the “Test Setup” section). There is

no need to list trivial steps such as “install this” “install that”.

You need enough info so that readers will understand what the tests do and how they are constructed.

Since no one will use this document as step-by-step instructions how to run a test, save the excruciating

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 38

details to the place where you specify test cases and test steps (e.g. a test management system; or an Excel

file; or whatever).

If the tests are run by an automated system, indicate so. Consider if to give the command line that will

run the tests. If all the tests in the module are executed by this one command, it may make sense.

Otherwise, give the details as part of the detailed test cases.

Example (manual test)

 Test environment: Basic setup (for an IoT device with peripherals)

- Build an image following to the specifics in the test case

- Burn the image and boot

- Check for correct driver and sub-system status (success for positive tests; fail for negative tests)

- Repeat for:

o Camera

o Audio

o WiFi

o Type-C connector

Example (automated test)

 Test setup: BAT setup

- Set the WiFi card status to one of the airplane modes (On or Off)

- Execute power cycle

- Check that the card stayed in “airplane mode”

- Repeat 100 times, for each power cycle type (S3, S4, S5)

To run, execute:

C:\ powerFlow.exe –c S3 –n 100 –AirplaneMode on

Test Tools

List the test tools that will be used in this test. No need to explain anything on the test tools – you already

did this in the “Test Tools & Automation” section Just write their names.

Example:

powerFlow.exe

Restrictions, Limitation and Exclusions
Describe any restriction, limitations or exclusions that should be known about this test.

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 39

Examples:

• The test runs only in specific configurations

• Access to the certificate authority (CA) server is restricted from the lab environment. The test,

therefore, simulates the CA server. We run the test manually, for Beta, using a direct internet

access link.

• The system must be rebooted at the end of each test

Test Cases

Give a pointer to where the test cases are.

• For unit tests this will usually be a path on the code repository system.

• For automated tests that are also tracked via a test management system, give both: a URL to the test

management system and the code location in code repository.

• For Feature this will usually be a path to test cases in a test management system.

For automated tests, you need to explain how to compile the automated test code, how to run it on the

target code and where the results (including, when applicable, performance and code coverage results) are

to be found. The correct approach is to have a reference document where this is explained.

Explain where each test case is described. For automated tests, the recommendation is that each test is

described by a comment at the head of the test code. If the test is defined in a test management system,

the test should be described in that system. If tests are using different setups, test description must include

a reference to the setup used.

Tests should be traced to requirements. This is a must for safety-related features and highly recommended

for any other feature. Explain how tracing is done and where it can be viewed.

For ISO 26262 compliance, ensure that this section covers the following (in most cases, coverage will be

by the details in the test case management system):

• What are the pass and fail criteria and process for evaluation of verification results? [ISO 26262-

8:2018; 9.4.1.1c]

• Complete a), b), c) or a combination of a), b), and c). [ISO 26262-8:2018; 9.4.2.1a, b, c]
a) Provide review or analysis checklist to be used in verification and rationale for sufficiency

b) Provide details of simulation scenarios which will be used in verification and rationale for

sufficiency

c) Provide details of the test cases, test data, and test objects to be used for verification and rationale

for sufficiency

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 40

If testing is applied (Option c) above), provide the following details for each test method applied (group of

test cases) [ISO 26262-8:2018; 9.4.2.3]

a) Test environment to be applied per test method

b) Logical and temporal dependencies per test method

c) Resources required for each test method (tools, setup, etc.)

• Coverage of requirements at the software architectural level by test cases shall be determined. [ISO

26262-6:2018; 10.4.4]

Testability Hooks

List here the testability features you need in order to be able to execute the test cases you plan. Write only

those features that already exist or that development agreed to develop; this is not a wish list. If you find,

through looking at the ideas below, that a test hook will make your life simpler, make the test shorter or

allow testing something you can’t test today… go talk to the developers and try to convince them to

implement it. Once they do, you can list the hook here.

If you test your feature without any test hooks – just write NA in this section.

Note: In some cases, testability hooks are added to intermediate, development versions, but removed from

the final product. This means that the tested SW is not exactly the same as the one eventually released

and that some tests cannot be run on the final binary going out. You should consider the implications.

Does this add unacceptable risk to the released code? There are several possible approaches:

• Leave the testability hook in the final code (adding, sometimes, a security risk or exposing

information you don’t want to expose)

• Analyze the risk and decide if it is acceptable

• Find a less intrusive way to test the code (maybe in a less efficient way – which may be acceptable

if it is only for the last test cycle).

• Etc.

ISO 26262-6:2018, section 10.4.7, requires documented analysis of such situation. See the full text in “Test

Design Specification” section.

The following is a list of testability features to think of. Some may be relevant to your feature. Asking for

these on time (during requirements and coding phases) increase the chance of getting them. You can

think of other hooks too!

Source: “Design for Testability” – lecture by Bryan Bakker, QA & Test 2010 conference

Think of :
• Testing without HW

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 41

• Simulated environment (for automatic testing or unfeasible environment)

• Testing without physical access to the DUT (workaround mechanical switches/buttons to allow

non-attendant testing, to enable test automation; e.g. a way to power / shut down the system

remotely)

• Support for test automation

• Negative testing (failures from HW or environment)

• Support for test/SW engineers (diagnosis)

• Logging/Tracing

• Test components in isolation (modular architecture)

• Support for integration testing (test for messages)

• Test without UI

• Reliability/Profile testing: record user actions and replay

Achieve the above by:

• Visibility

• Ability to control

Ability to extract all kinds of system information. E.g.:

• Temperature

• Recording speed of recorder

• Mechanical movements verification

• Inspect messages (for integration tests)

• Logging (better inspection/analysis, tool support)

• Resource usage (CPU, memory, network)

Ability to trigger all kinds of system actions

• Push buttons (UI, mechanical)

• Set configurations

• Simulate events (motion events, alarms, hot temperature)

• Mechanical movements

• Simulate HW failures/imperfections

• Flash (“burn”) a new FW

State visibility:

• Ability to get state information from each component

• Ability to dump the complete system information

• State machines trace/log state transitions

Communication between each set of components:

• Visible (minimal requirement)

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 42

• Controllable (less critical – depending on the case)

• Via dedicated or standard interfaces

Ability to log user actions

Ability to record and replay the user’s actions.

Test Environment

This section covers both the details of a test bench setup and general lab environment needs.

For ISO 26262 compliance, ensure that this section covers the following:

• Describe the verification environment. [ISO 26262-8:2018; 9.4.1.1d]

• Discuss the test environment relative to the requirements of [ISO 26262-6:2018; 10.4.7]. If you are

testing the code loaded to the target processor without any simulations involved, you are not running any

of the options listed in 10.4.7[Note3] - and this is OK since we actually prefer testing on the real final

HW. Otherwise, apply SIL, MIL, PIL, HIL to have a test environment as much as possible similar to the

real final environment. If not possible, highlight the differences so that the subsequent test phases can be

fine-tuned accordingly.

Test Setups

Describes the test environments or configurations to be used during the execution of tests.

For unit tests in complete isolation, this is probably just the standard development machine setup. For

unit tests that are performed on the target HW, this will be more complicated.

At Master Test Plan level this section may be NA (when the setup is different for different features; there

is no point in listing all the setups at MTP level). On the other hand, if the same setup is used for all the

project, it can be described in the MTP and save the need to repeat it in all Feature test plans.

Give each environment or configuration a unique ID (e.g. CHL_1). The test cases can then reference a

specific setup ID instead of specifying the setup details.

If you are testing on more than one OS – you need to specify a test setup per OS.

Ideally you should use setups that match those that the final released product will be used on. But there

are cases where proper testing cannot be done on the production version or environment and you need to

use setups that differ from the final released product.

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 43

Examples:

• Pre-production systems that allow access to information that is locked-out on production systems

• Debug setup that allow testing features with limited controllability or observability in the Release

version

For FuSa, these cases call for special attention:

For unit tests, ISO 26262-6:2018, section 9.4.5 requires to give explanation if not testing on the target

environment. If you test in isolation, you will not be using the target HW since no HW is needed. This is

a good enough explanation… But if you are using a simulator instead of the hardware, or a hardware that

is not the final target hardware – you need to state so and justify why.

A similar requirement exists for Integration and Feature tests, in ISO 26262-6:2018, section 10.4.7: If the

software integration testing is not carried out in the target environment, the differences in the source and

object code and the differences between the test environment and the target environment shall be

analyzed in order to specify additional tests in the target environment during the subsequent test phases.

If this test plan document contains more than one level (e.g. Unit test & Feature test) and the setups are

similar, it’s enough to describe the setup once, and reference it (by setup ID) in the other section of the

test plan.

When defining test environments for a test, always specify the simplest setup that allows running the

specific test. The tester can always decide to build the most complex environment to allow running all

tests on the same environment. However, if you need to split tests across several setups, you will probably

not want all the setups to be the complex one, for cost and setup time considerations. Specifying the

simple setup will allow building what is needed and not more.

Setup 1 [Setup ID]

Duplicate this section and its sub-sections as many times as there are test environments.

Environment Diagram

In most cases, adding a setup diagram makes it much clearer. Before spending your time drawing setups,

check if it is possible to cut-and-paste the setup description – or at least good parts of it – from other test

plans or from a PowerPoint presentation.

<Add a diagram here >

Environments Components

The components appearing in the above diagram are described in the following table:

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 44

Table 10: [Unit | Integration | Feature] Test environment components

Add rows to the tables as needed

Setup assembly instructions

Add here instructions for assembling the test setup. This can be anything from a very simple “Install all

SW components” to details about HW connections and wiring, order of SW components installation; per

OS instructions; workarounds; troubleshooting etc. The level of detail needs to be such that a person with

relevant background in the tested product and technology will be able to do the setup by themselves. It

often happens that at the start of the project the instructions are complicated, calling for manual steps and

temporary solutions. Later, the setup simplifies. Write what is correct for now and update the instructions

as they change during the project.

You can have a URL here, pointing to an online resource (e.g. WiKi) where the setup instructions exist.

But you then need to make sure no one breaks the link. So maybe just copy/paste the instructions here.

Hardware and Lab

List here items that are needed to execute the test plan. How much lab space and lab tables do you need?

Do you need racks of equipment that take space and take time to set up? A large cluster of machines that

calls for a high capacity air-condition unit?

Pay special attention to long-lead-time items and to expensive items – these may take time to get.

For unit test, this section will almost always be “NA”.

HW Components

Equipment Name Details

Base Platform OS, memory config if relevant, platform camera, etc.

SW Components

Type Name Version

Screen Recorder Camtasia The version of the SW

component installed on the DUT

or on other environment

ingredients

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 45

Software Environment / Environment configuration

Do you need special operating system flavors? How would you get the latest OS updates? Are there

software tools that are not part of the immediate setup but are needed for the tests? Do you need to buy

licenses? (Examples: test execution tools, network servers, authentication authorities, databases, utilities of

all sorts, statistics analysis packages, unit test framework, etc.)

In many cases this will simply be:

Nothing special over the details in the Test Setup section.

Examples:

• For testing Android you may need an external control system

• Do you need a certificate from some certificate authority?

• DHCP, DNS and others such servers

For FuSa, the SW tools used in the validation process may need to be qualified. See ISO 26262-8:2018,

Section 11.

Security & Privacy

If you use test data that contains personal information (images of people; other personal data), explain

how you follow the required legal processes.

This is NOT the place to talk about security testing (as in cyber security). If your feature or product has

such considerations and you are testing for that, this should be an added Test Module in the Test Design

Specification section (and in the “Features to be tested”). Possibly it will merit a Security Test Plan –

which is not covered by this document.

Test data requirements

Are there any special requirements for data? In some projects, this is very critical and there is a lot of

work associated with generating the test data (e.g. when this data needs to be collected in the real world;

when a large database needs to be populated for test purposes; when ground-truth has to be prepared

manually). In other cases, there is hardly anything to say here (“NA” is a good choice in these cases).

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 46

Test Execution

Test Entry Criteria

When will you start testing? What’s the minimum that must be available or the minimum functionality

that the code must show before you invest your precious time to test it?

BAT Strategy

BAT (Build Acceptance Tests) tests are also known as “Smoke Tests”

Do you have a BAT Test? When is it run? By whom? What is the criteria for selecting a test for the BAT

suite? What happens if BAT fails? Are there cases where BAT failures do not block start of testing?

 This section appears only in the Master | Feature test plan. Depending on what you call Integration

tests, you may want to add it to Integration test plan.

Continuous Integration Test Strategy

Unit tests

Is unit testing going to be part of the CI tests? If so, you need to think about how tests are extracted,

compiled and applied to the build; where results are collected; what happens on fail, etc.

Integration tests / Feature tests

Do you have CI? When is it run? By whom? What system? What are the criteria for selecting a test for

the CI test suites? How often is it run? What triggers a run?

Do you have a gated check-in methodology? What are the criteria for selecting a test for the gated check-

in test suites? Are these tests installed on the developer’s system or is there a centralized framework? Is it

triggered by check-in or is there a need to manually trigger it?

Regression Strategy

What’s your regression strategy? Risk based? Kitchen sink?

What are the criteria for adding tests to the regression suite?

Who runs it? How often?

Do you approve taking intermediate SW drops? If you do, what’s the testing strategy once an intermediate

drop is delivered (do you require to reset and re-test all tests? Some? none?). How often do you expect the

test teams to run a test cycle?

How do you prune the regression test suite (how often is it reviewed? What are the criteria to remove

tests from the regression suite?)

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 47

For ISO 26262 compliance, ensure that this section covers the following:

• What is the regression strategy for re-execution of verification after a change to the work products

under verification? [ISO 26262-8:2018; 9.4.1.1g]

Compliance and Certification

Does any feature in the tested code subject to certification, compliance requirement or regulatory

requirements? How do you plan to test this? To achieve the needed certification?

 This section appears only in the Master | Feature test plan. Depending on what you call Integration

tests, you may want to add it to Integration test plan.

Milestone Release Testing

What’s your milestone testing strategy? Do you just run all the regression tests or more?

What are the criteria for adding tests to the milestone test suite?

Are there tests you only run on a Milestone release and not in the regular regression test? Why?

 This section appears only in the Master | Feature test plan. Depending on what you call Integration

tests, you may want to add it to Integration test plan.

Metrics to be collected

What metrics will be collected and tracked?

At unit test level, this is usually coverage metrics. How will you combine coverage data from various

sources (e.g. developers) into one report?

At Master Test Plan, these would be things that are tracked on the dashboard for the project (e.g. open

bugs; closed bugs; completed tests; etc.).

For Feature Test Plan these will usually be related to number of tests planned, executed, pass, fail.

Sometimes you will also track performance metrics that are specific to the tested feature set.

It is likely you already listed the information about metrics in the test approach section. In these cases,

just make a reference to the relevant paragraph.

Software Test Plan sections.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 48

For FuSa, you must provide the measure of requirements coverage by tests. For this, you need to provide a

traceability matrix of requirements and the tests that cover them. It is assumed that this matrix is

managed in a database or an external table. Reference this here. Note that the material you provide for the

“Test Cases” section may be prepared in a way that provides the requirements coverage indicator.

Test Monitoring and Control

How do you track your progress? What triggers update activities (such as adding more tests; pruning test

lists; changing test suite content)? Who makes sure that tests are created and executed?

In many cases there is nothing special done – you just follow the project-level or org-level processes. In

these cases, just reference the relevant document (e.g. [MTP] or [OTS]).

Bug Management

How do you manage bugs? In what system?

Who runs the SysDebug (or Bug Scrub, or whatever name your org call the Bug Triage meeting)? What is

the process used by that team?

How do you deal with unit test and integration test bugs? Do you report them? Where? In many cases,

unit and /or integration bugs are solved on the spot – do you report these? Log them somehow?

How will you deal with bugs to 3rd party, and bugs from 3rd party?

If you have multiple branches, do you clone bugs from one branch to the other? How do you ensure that

all branches are fixed?

In most cases you can simply reference your organization’s bug management processes defined in the

[OTS]:

Bug management follows the standard process as defined in the [OTS].

For ISO 26262 compliance, ensure that this section covers the following:

• What actions will be taken if anomalies are detected? [ISO 26262-8:2018; 9.4.1.1h]. The

information about bug management may be covered, for FuSa, in the Change Management work

product. In that case, reference that document here.

Bug Fix Verification (“re-test”)

Anything special? Or just use the below.

Risk analysis.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 49

Unit test

All unit tests are expected to pass prior to checking in the code. Therefore, re-test is being done on the fly
as part of the development process.

Integration test / Feature test

Bug fix verification is the first task done on a new release, before the start of any test cycle.

Test reporting

How are test results and test evidence collected and reported?

If the tests are in a test case management system than reporting is usually a report from the system.

In most cases, this will not be different than what’s listed in the [OTS], so this section becomes a reference

(“see OTS section X”).

You may have already answered this in “Test Monitoring and Control”. If so, just reference that section.

Risk analysis

For Safety-related projects, Risk Analysis should be done centrally. If this is how your organization

manages Test risks, reference the relevant document instead of filling the table here. Centralized risk

analysis is also an option for regular projects.

Identify any major risks to the successful execution of this test plan that are known at the time of writing

this plan. For each risk, identify level, owner, contingency plans. State when and how risks will be

reviewed. Discuss how the risks will be managed. For example: “Risks will be raised and tracked at the

weekly meetings”.

For ISO 26262 compliance, ensure that this section explains how test planning was influenced by and

how test covers the following

• How was the complexity of the items under test taken in consideration when planning the

verification and test activities? [ISO 26262-8:2018; 9.4.1.2b]

• How were prior experiences related to the verification of the items under test taken in

consideration when planning the verification and test activities? [ISO 26262-8:2018; 9.4.1.2c]

• How were the degree of maturity of the technologies used or the risks associated with the use of

these technologies taken in consideration when planning the verification and test activities? [ISO

Risk analysis.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 50

26262-8:2018; 9.4.1.2d]

Product risks

For Master Test Plan, discuss which features are deemed more important, critical or risky than others (in

term of the confidence it will fulfil the functional and non-functional requirements associated with it).

Other criteria that can identify risky features:

• New features (VS legacy features)

• Features whose development process used new methods, concepts, tools, or technology

• Complex features

• Features that have high user visibility

• Features with a history of high bug count or high bug severity

• Features who are frequently changed (lots of Change Requests)

• Features that were developed by new / novice developers

For Feature Test Plan: In many cases, some of the Test Modules are more important, critical or risky than

others (in term of the confidence the code will fulfil the functional and non-functional requirements

associated with them). This should mean it gets more testing. Describe the considerations that lead to

deciding which aspect of the feature gets more effort and attention. Discuss also what type of testing (e.g.

functional; use case) gets more focus and if you have different coverage goals for different test modules.

For each identified risk, provide recommendations to mitigate it.

Project risks

Identifies test-related project risks and provide recommendations to mitigate it.

Some of the project-level items that can make the test plan ineffective are scope creep, late drops,

environment creep, build quality, lack of resources. Discuss contingency plans if one of the risks

materializes.

Example for a risk table is below. Note how colors are used to mark high-medium-low risks. Both project

and product risks should be tracked in the table. If you feel it will help you, add a column identifying the

type of risk (product, project). Personally, I thought this just adds overhead so opted to leave the sample

table without it.

If this test plan covers more than a single test level (e.g. you cover unit, integration and feature test plans

in the same file), consider adding a column identifying the test level relevant to the identified risk.

If risk is managed formally somewhere else (e.g. in an ALM system) - just reference that system here.

Schedule, Project management and Staffing.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 51

Table 11: Project and Product Risk and Mitigation

Risk Risk Type Level Owner Contingency Status

Platform resets after long use Product Low Jane Hold off running stress tests;

rest the platform manually

before long tests

Open

No resources to create Ground

truth for Face recognition

Project Medium Jim Subjective evaluation of the

resulting model

Implement some of the ideas

listed in this test plan

Open

PDX module is late or only

partially functional

Project High John Test the base logic without

PDX.

All tests will need to be

repeated once PDX is

functional

Open

Image processing code is too

slow

Product Show

stopper

Jo-Ann Stop testing at 90 fps until the

algorithm is optimized

Open

Schedule, Project management and Staffing

General comment: This section was added here since ISO 29119-3 (Software and systems engineering —

Software testing — Part 3: Test documentation) has it as part of Test Plan document. ASPICE does not

require in its work products list (Automotive SPICE Version 3, Annex B, item 8-52, where it references

the ISO 29119). Which means that if your organization does not coordinate and manage staffing and

schedule via test plans, you can just reference where this is being done and move on. You can even opt to

just write here NA.

HAVING SAID THAT and before you rush to ignore this section: why don’t you spend the better part of

5 seconds and think if you have the needed staffing? Do you need to employ 3rd party testers? Are there

training needs you need to plan for? Find the answers and take care of the needs. Then, if you manage

schedule and staffing somewhere else, just say so here and move on.

Schedule

Add here any schedule information relevant to this test plan.

Schedule, Project management and Staffing.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 52

In most cases, all you will have here is a reference to the place where your organization has schedule

information. It is recommend to do so since whatever schedule you put here will not be correct two

weeks into the project.

If you insist on having some type of schedule here, make it a high level one, with a clear disclaimer and a

link to where the most updated schedule is located.

Link to Project Plan file: Path, URL or other valid pointer.

Disclaimer: This high-level schedule is probably good for the few weeks around the creation date of this
document. Take it with a large grain of salt and ask the project managers for confirmation of dates if you
plan anything that depends on project milestones. It is provided here to create general timeline context.

Table 12: Milestones schedule

Project management

The [OTS] may already have the information requested below. If so, reference that document.

This section is a good candidate for marking as “NA” unless this is your Master Test Plan.

Project ownership

Who is running the project? How are decisions taken? Who owes information to whom? Who represents

the testing teams in the product management team?

Milestone Date

Pre-Alpha WWxx

HW samples WWxx

Alpha to Val. WWxx

Alpha to OEM WWxx

Beta to Val. WWxx

Beta to OEM WWxx

PV to Val. WWxx

Release WWxx

Schedule, Project management and Staffing.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 53

Coordination between test teams

What teams are involved? What type of coordination is expected to exist (and be maintained) between

the test-teams?

Test Cycle creation and tracking

How will test cycles be created? Who decides their content? Based on what? Is there a single cycle for all

teams, or a cycle for each test teams? If a single one, how do testers know what their team owns? Do you

copy results from previous cycles? When are all results being reset?

Deciding test-cycle frequency, assigning resources and tracking execution is normally done via other

systems. Put here a reference or a URL to the system used by your organization.

Standard meetings

Are there any standard meetings for this test-project (e.g. weekly validation meeting; daily bug scrub)?

Staffing

Generally, staffing plans are not done in the test plan documents but by the project managers, using other

documents and systems. Note though that SOMEWHERE you should have a coherent list of who does

what – and this list can be referenced here.

You may want to write here something generic about how and where staffing is dealt with in your

organization.

Roles, activities, and responsibilities

Quoting ISO 29119:

“Provides an overview of the primary (they are the activity leader) and secondary (they are not the leader

but providing support) people filling the test-related roles and their corresponding responsibilities and

authority for the testing activities. In addition, identifies those responsible for providing the test item(s).

They may be participating either full- or part-time. “

Example:

The responsible parties could include the project manager, the test manager, the developers, the test

analysts and executors, operations staff, user representatives, technical support staff, data administration

staff, and quality support staff.

For each testing person, specify the period(s) when the person is required.

Schedule, Project management and Staffing.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 54

In Master Teat Plan, list all teams (or engineers) that will be implementing this test plan. See table below.

In “Primary responsibility” give a shorthand (1 sentence) summary of this team’s role in this project. It

may be that this information is already in the “Features to be tested” table. If so, reference it here.

Table 13: Roles and Responsibilities

Team Manager/

Owner/Lead

Geo Location Primary responsibility

Validation

Engineering

Power and

Performance

Certification

Hiring needs

Quoting ISO 29119:

“Identifies specific requirements for additional testing staff that are necessary for the test project or test

sub process. Specifies when the staff are needed, if they should be temporary, full or part time, and the

desired skill set. These may be defined by contract and business needs.

Note: Staffing could be accomplished by internal transfer, external hiring, consultants, subcontractors,

business partners, and/or outsourced resources.”

External Test Resources

• Will you use any Test Houses for this project? Which Test House(s)? What tasks are done by the

test house?

• What is the strategy for selecting tasks that are delegated to a Test House?

• How is the test house monitored for quality and efficiency?

• Who manages them?

• What HW needs to be provided to the 3rd party? Who will order, ship and track it? If it is

expensive or confidential HW, this is a VERY BIG deal – make sure to work on it on time.

• How will bug reports be passed to/from a Test House?

• How will you pass new releases to the Test House?

Schedule, Project management and Staffing.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 55

3rd party IP providers

• What 3rd party components exist in this project?

• What tests do you plan to do on that IP?

• What is the partition of test work between your test team and the 3rd party?

• Were there any agreements with the 3rd party regarding incoming quality and testing? Are there

gates to accept this component (acceptance tests? Other?).

• Who will review and approve these agreements? Who will review test content from the 3rd party?

Who will monitor that the 3rd party complies with their commitments? Are there clearly defined

communication channels? Names?

• What HW needs to be provided to the 3rd party? Who will order, ship and track it?

• How will bug reports be passed to/from a 3rd party?

• How will you pass new releases to the 3rd Party? How would you get new drops from them? Who

owns integration and is the test team involved in such activities?

Skills / Training Needs

Anything the testers need to learn to be effective in testing the feature?

If this test plan covers more than one test level (e.g. Unit + Integration), you may want to list different

needs for each test level.

If this test plan covers safety related features or code, the skill set needed by the testers include basic

understanding of safety concepts and practices. See ISO 26262-2:2018 Section 5.4.4 .

Appendix A – Test Levels.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 56

Appendix A – Test Levels

The following explains what each test level means. The Template was built with these definitions in

mind.

Unit tests

A Unit of code is a single function. Unit tests are isolating the function from all its dependencies by use of

mocks and stubs that simulate the behavior of the dependencies. Using a unit-test framework or tool, the

mocks and stubs are controlled to create the desired test conditions. This full control over the surrounding

environment allows achievement of very high code-coverage metrics, as required by ISO 26262 for SR

code.

The above is the classic definition of unit-test: testing in complete isolation. However, teams can define

the size of a unit differently (e.g. a Class can be tested as one unit). Regardless to what your team defines

as a “unit”, the important part is the isolation from the rest of the system. Following this logic, if your

tests are running on code that is installed on the target hardware (e.g. it is not isolated from the

hardware), you are running Integration or System tests.

Integration tests

This test level is the hardest to define clearly. It can take many forms and the boundary between

integration and system tests is fuzzy.

Case in point: You develop FW for an embedded processor that is part of a larger system which contains

other processors and peripherals. You load the FW to the target HW, boot the system’s OS and load all

the other peripherals FW and drivers. You now have a full system and you are testing that the features of

your FW are working as required.

What test level is it?

Some organizations call it Integration test: we test that our FW and HW integrates well into the full

system. That it works well with shared resources and with other SW components that make up the

system.

Other organizations call it System test – this is a black-box testing, using the complete FW and the target

HW; it is not just checking that parts of the FW integrate well with each other.

Some possible suggestions to define what is covered by Integration tests:

• Tests done on simulators or emulators; for example, pre-silicon testing

• Continuous Integration tests (testing the new pieces of code work well with older code)

• Tests done at early stage of development, as the initial pieces of code are brought together and

loaded to the HW

• Tests done on a new feature that is added to an existing system

Appendix A – Test Levels.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 57

The definition you chose will also define if integration test is a relatively short, one-time event done at an

early stage of the project or a stage that continues to exist in parallel to System tests.

Note: The Integration Test Plan template was written with the above amorphic definition in mind. If in

your organization “integration tests” are applied to the full FW, installed on the target HW and on the

target platform the Master|Feature Test Plan may fit better. But in truth – there is little difference

between the Integration and the Master|Feature templates. It’s just that in proper places, the term

“integration” is used.

System test

As mentioned for Integration, you may decide that since you only test your SW and HW, and not the

whole product, you are never doing “system tests”. You always do Integration tests. This definition works

well with ISO 26262:Part6, Section 11 where the “vehicle” is seen as the “system”.

A different approach is in ISO 26262 Part 4: according to that standard, once you integrate the HW and

SW of a building block, it is already a “system”. Multiple such systems are then integrated together to

make a more complex system (“system of systems” – although ISO 26262 does not use this term

explicitly). At each level, there is “System integration and test” step.

The template provided in this eBook targets predominantly the building-block level and not the whole

system-of-systems. To avoid confusion, this template does not use the term “System Test plan”. Rather, it

uses “Master Test Plan” or “Feature Test Plan”:

• Master Test Plan is a high level test plan that outlines the overall approach to testing the product

your team develops (regardless if it is a complete product or just a building block in a larger system). Some

organizations call this document a “Project Test Plan”.

• Feature Test Plan is the next-level breakdown from the Master plan. The test strategy for each

feature listed in the master test plan is outlined in detail. The feature is further broken into sub-features

and describes the test strategy and test design of the sub-features.

Whatever your terminology, if your testing is black-box testing of the complete deliverable coming from

your team, installed on the target HW, you will probably do OK if you use the “Master | Feature Test

Plan” template to describe your test plans.

The template can probably be used as a good starting point for integration and system test plans for a

system of systems. In such case, use the Master | Feature Test Plan section as well.

Appendix B – Relevant International Standards.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 58

Acceptance tests

Acceptance tests are tests done to prove that the system satisfies the customer’s formal acceptance criteria.

The tests are conducted to enable the user, customer or other authorized entity to determine whether or

not the system meets their requirements.

While the Template does not have an Acceptance Test section, since these tests are black-box tests

targeting the system level, using the Master|Feature test plan section would, in most cases, provide a

reasonable template.

Appendix B – Relevant International Standards

Some notes on international standards that are related to SW test, functional safety and the automotive

market.

There are three relevant standards:

• ISO 29119: Software and systems engineering – Software engineering. Part 3 deals with Test

Documentation and is of direct relevance to this template.

• A-SPICE: Automotive SPICE Process Assessment / Reference Mode. This standard defines a quality

management system (QMS) to be implemented by SW suppliers to the automotive industry.

• ISO 26262: Road vehicles — Functional safety. Parts 6 (Product development at the software level)

and part 8 (Supporting processes) are specifically relevant to SW testing.

ISO 29119

Appendix B – Relevant International Standards.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 59

ISO 29119 defines a number of documents that are relevant to software testing. Two are relevant to

mention in relation to the Test Plan Template:

o Organizational Test Strategy (OTS)

o Test Design Specification

The Organizational Test Strategy is a document that describes testing in your organization. In simple

terms, the OTS explains “how our team does testing”.

Since you insist… here is how the standard explains the OTS (ISO 29119-3, section 5.3):

“The Organizational Test Strategy is a technical document that provides guidelines on how testing

should be carried out within the organization, i.e. how to achieve the objectives stated in the Test

Policy. The Organizational Test Strategy is a generic document at an organizational level that

provides guidelines to projects within its scope; it is not project-specific.”

In almost all organizations, much of the test strategy, test project management and other test activities do

not change between projects. The OTS describes how these activities are done. Once your team has an

OTS, much of the information expected to be detailed in a Test Plan is already documented in the OTS. It

means you don’t need to re-write it again in each project’s Test Plan – you just reference the OTS.

The Test Design Specification identifies the features to be tested and the test conditions derived from the

test basis for each of the features, as the first step towards the definition of test cases and test procedures.

I found that it is natural and with less overhead to combine the Test Plan and the Test Design documents

– especially when writing a Feature Test Plan. The sections titled “Test Design Specification” at each test-

level contains details of the information that ISO 29119 expect to see there.

ASPICE

ASPICE defines a quality management framework. It outlines a Process Reference Model and Process

Assessment Model. One aspect that ASPICE covers is software testing. For SW test documentation, ASCIE

relies in part on ISO 29119 for details. Specifically, to comply with ASPICE requirements for content in a

Test Plan, one needs to follow the ISO 29119 definition of the Test Plan.

ISO 26262

ISO 26262 defines specific requirements for Unit test, Integration test and System test. These are on top of

the general requirement that code is developed under a Quality Management system.

Since the automotive industry requires that suppliers implement ASPICE, one can see the ISO 26262

requirements as an added level of details on top of the ASPICE requirements. To avoid having to maintain

two different templates, one for code that contains safety requirements and one for the rest of the code,

the Template was created to support both.

Appendix B – Relevant International Standards.

SW Test Plan Template Guide © Intel Corporation 2021, All Rights Reserved

 60

For safety-relevant code, the template includes sections and support tables for collecting the data that ISO

26262 requires. The Guide includes specific explanations how to use the tables and how to provide the

information required for ISO 26262 compliance.

EuroSTAR Huddle

Europe’s Largest Selection of Software
Testing Content.

1,250+ Blogs | 100+ eBooks | 200+ Webinars

The EuroSTAR team invite leading testing
experts to share their knowledge with
the community on Huddle. When you
join Huddle you can access an unrivalled
selection of resources across all the latest
topics in software testing.

Expand your testing knowledge and join
us for regular live webinars from prominent
speakers and top contributors to the world
of testing. Ask for help in the Huddle Forum
and avail of our Huddle blog for the latest
articles and trending topics in testing. Being
part of EuroSTAR Huddle is an investment
in your ongoing professional development
and will give you added skills to help you
achieve the very best in your career.

www.eurostarhuddle.com

Our Events

When you have enjoyed the online
resources on Huddle, the training continues
at our annual software testing events.

Experience the welcoming EuroSTAR
Community. Be inspired by exceptional
speakers sharing real life testing
experiences. Try out the latest tools in the
Expo and take advantage of the nonstop
networking to connect with leading
testing experts and upcoming innovators
all in one place.

EuroSTAR Software Testing
& Quality Conference

Celebrating 30 years of the EuroSTAR
Community in 2022 - the longest running
and largest software testing conference
in Europe welcomes over 1,000
delegates every year.

EuroSTAR Huddle on Tour

We also host a number of smaller
conferences and events in different
locations and bring the EuroSTAR
Huddle live experience to partner
events around Europe.

Visit EuroSTAR Website

Join The Community

https://conference.eurostarsoftwaretesting.com
https://huddle.eurostarsoftwaretesting.com

	SW Test Plan template Guide.v1.0-Public-eBook.pdf
	Table of Contents
	Revision History
	Preface
	A bit of history
	Acknowledgements
	Disclaimers

	General
	How to use this guide
	What is a Test Plan?
	Guide structure
	Why write a Test Plan?
	Terminology
	Template structure
	Where to start?
	Technical notes
	General writing tips

	Front Matter
	Table of Contents
	Revision History
	Opens

	Introduction
	Purpose
	Audience
	Acronyms and Terminology
	Reference Documents

	Document scope
	Prerequisite documents
	In Scope
	Out of Scope

	Software Test Plan sections
	Test Scope
	Safety requirements
	Test items
	Features to be tested
	Documentation to be tested
	Units not to be tested
	Integration items not to be tested
	Features not to be tested

	Assumptions, Dependencies, and Constraints
	Assumptions
	Dependencies
	Constraints

	Test Approach
	Test Strategy
	Safety requirements test strategy
	Test Completion Criteria
	Suspension Criteria and Resumption Requirements
	Configurations coverage strategy
	Platforms and OSs coverage
	Software configuration and calibration coverage strategy

	Test Tools & Automation Strategy
	Test Design Specification
	<Test Module #1>
	Sub-Test-Module A

	Test Cases
	Testability Hooks

	Test Environment
	Test Setups
	Setup 1 [Setup ID]

	Hardware and Lab
	Software Environment / Environment configuration
	Security & Privacy
	Test data requirements

	Test Execution
	Test Entry Criteria
	BAT Strategy
	Continuous Integration Test Strategy
	Regression Strategy
	Compliance and Certification
	Milestone Release Testing
	Metrics to be collected
	Test Monitoring and Control
	Bug Management
	Bug Fix Verification (“re-test”)

	Test reporting

	Risk analysis
	Schedule, Project management and Staffing
	Schedule
	Project management
	Project ownership
	Coordination between test teams
	Test Cycle creation and tracking
	Standard meetings

	Staffing
	Roles, activities, and responsibilities
	Hiring needs
	External Test Resources
	3rd party IP providers
	Skills / Training Needs

	Appendix A – Test Levels
	Unit tests
	Integration tests
	System test
	Acceptance tests

	Appendix B – Relevant International Standards

