
Design for Testability

QA & Test

2010

Bryan Bakker

October 2010

© Sioux Embedded Systems | Confidential | 2

Contents

 Sioux

 Intro

 What is Design for Testability (DfT)?

 Test Automation

 Design Rules

 Pre-requisites

 Watch out

 Conclusion

 Examples from embedded/technical domain but

concepts also hold for office domain

 Scope: integration and system testing 2

© Sioux Embedded Systems | Confidential | 3

About Bryan Bakker

 Test Architect

 Certifications: ISTQB, TMap, Prince2

 Member of ISTQB Expert Level on Test Automation

 Accredited tutor of ISTQB Foundation

 Domains: medical systems, professional security

systems, semi-industry, electron microscopy

 Specialties: test automation, integration testing, design

for testability, reliability testing

3

About Sioux

© Sioux Embedded Systems | Confidential | 4

HERENTALS

MOSCOW

NEDERWEERT

EINDHOVEN

UTRECHT

http://www.punchinternational.com/web/index.asp?customer=1&ut=L
http://www.icos.be/index.htm
http://en.wikipedia.org/wiki/Image:Photo_lb.jpg

© Sioux Embedded Systems | Confidential | 5

Intro

 Device including HDD

 During test phase no serious HDD issues

 After release: HDD failures in field

Customers return units (NFF)

 False alarms!

 SW not robust against HDD imperfections

 Firmware upgrade needed to prevent more returns

 Could this have been prevented?

 Simulate HDD imperfections

 find defects during development/test

 more robust SW/System 5

© Sioux Embedded Systems | Confidential | 6

What is Design for Testability
(DfT)?

 Definition:
Take testing into account during design/architecture
definition

 Main goals:
 More efficient testing (find defects earlier, automation)

 Increase coverage of testing (manual and automatic, make it
possible to detect other problems)

 Enable automatic testing

6

Cost of defect fix (Barry Boehm)

Requirements Design Implementation Test Operation

Examples

 Think of:
 Testing without HW (not finished or expensive)

 Simulate environment (for automatic testing or unfeasible environment)

 Replace mechanical switches/buttons (test automation)

 Support for test automation

 Negative testing (failures from HW or environment)

 Support for test/sw engineers (diagnosis)

 Logging/Tracing

 Test components in isolation (modular architecture)

 Support for integration testing (test for messages)

 Test without UI

 Reliability/Profile testing: record user actions and replay

 By
 Visibility

 Control

© Sioux Embedded Systems | Confidential | 7

© Sioux Embedded Systems | Confidential | 8

Visibility

 Visibility

 Usually: subset of system information is shown to

end-user

 DfT: interface defined to extract info from system

 Also for “hidden” info

8

© Sioux Embedded Systems | Confidential | 9

Visibility

 Normal transfer of information

9

 Offer information to test software:

 Define test interface (test hook) to inspect info from

Comp A

 On Comp A or Comp B or in between?

Comp A Comp B
info

Comp A Comp B

visibility

Test

SW

© Sioux Embedded Systems | Confidential | 10

Visibility

10

 Test interface on Comp A:

Comp A Comp B

Test

SWTest i/f

 Comp A is aware of interface

© Sioux Embedded Systems | Confidential | 11

Visibility

11

 Test interface on Comp B:

Comp A Comp B

Test

SW Test i/f

 Comp B is aware of interface

© Sioux Embedded Systems | Confidential | 12

Visibility

12

 Use wrapper or

message queue inspector (e.g. VxWorks)

Comp A Comp B

visibility

Test

SW

 Comp A and B are unaware of interface

 But not everything is sent to other components…

 Where to interface is design decision

© Sioux Embedded Systems | Confidential | 13

Visibility examples

13

 Extract all kinds of system information

 Temperature

 #Images passing through image chain

 Recording speed of recorder

 Mechanical movements verification

 Inspect messages (for integration tests)

 State information (of system or components)

 Logging (better inspection/analysis, tool support)

 Resource usage (cpu, memory, network)

 …

© Sioux Embedded Systems | Confidential | 14

Control

 Control

 Usually: system controlled by system interfaces like

user, environment, network, etc.

 DfT: interface defined to control the system

14

© Sioux Embedded Systems | Confidential | 15

Control

 Normal transfer of information

15

 Information altered by test software:

 Define test interface to control Comp B

- set information

- ignore control from Comp A (optionally)

Comp A Comp B
info

Comp A Comp B

Test

SW

control

© Sioux Embedded Systems | Confidential | 16

Control examples

16

 Trigger all kinds of system actions

 Push buttons (UI, mechanical)

 Set configurations

 Simulate events (motion events, alarms, hot temps)

 Mechanical movements

 Simulate HW failures/imperfections

 …

© Sioux Embedded Systems | Confidential | 17

Design Rules (examples)

 State visibility:

 Every component stores state information

 In one dedicated component

 Testcases can get this information

 Possibility: with one key-press  dump the complete system

information

(for defect analysis)

 Not to be used internally by system (no information hiding)

 State machines trace/log state transitions

 “easily” test the state machines with state-transition testing

 Determine coverage of testcases (n-switch coverage)

1717

© Sioux Embedded Systems | Confidential | 18

Design Rules (examples)

 Communication between each set of components visible

via interfaces (in tracing)

 Default functionality in VxWorks

 Communication can also be altered

 Used for integration testing

 All user actions are logged, and can be “replayed”

 Input for profile tests (software reliability engineering)

 Records error-guessing/exploratory tests for reproducibility

 Failures in HW to be simulated via (test i/f in) drivers

 Most projects start with: logging conventions

18

© Sioux Embedded Systems | Confidential | 19

Pre-requisites

 Early involvement of test discipline

 Influence on architecture/design
 By (test) architect

 Architecture must support effective testing

 Test requirements
 Functionality needed in the product to support testing

 Real requirements, need priority

 Implementation available on time

 Test interfaces
 Are deliverables of project

 Supported interfaces, thus maintained

 Used for automatic tests

 Test req/interfaces become part of the product
 Test functionality grows into supported functionality of the product

(Excel, XRays)

 Management commitment (DfT is an investment)

19

© Sioux Embedded Systems | Confidential | 20

Watch out

20

1. Disable test functionality in release versions?

 Like logging, tracing, test functions

 Different version, will behave differently

 Performance

 Issues in release version not reproducible in development

version

 Test functionality may still be needed

 Service/diagnostics/factory

 Problem analysis in the field

2. Testing via test interfaces  not the real thing

 Customer/environment uses different interfaces

 Decide where to interface (coverage  cost)
20

© Sioux Embedded Systems | Confidential | 21

Watch out

21

3. Beware: Probe Effect

 “unintended alteration in system behavior caused

by measuring that system” (wikipedia).

Be ware of these effects!

21

© Sioux Embedded Systems | Confidential | 22

Conclusion

 Design for Testability

 More efficient testing

 Increase coverage of testing

 Enable automatic testing

 Visibility & Control

 Part of design/architecture

 Nothing new! But hardly practiced in a structured way

 Beware: different in real world!

22

© Sioux Embedded Systems | Confidential | 23

Questions

23

www.sioux.eu

bryan.bakker@sioux.eu

+31 (0)40 26 77 100

Source of your development.

© Sioux Embedded Systems | Confidential | 25

Backup slides

25

© Sioux Embedded Systems | Confidential | 26

Combined

 Normal transfer of information

26

 Information retrieved and altered by test software:

 Define get and set test interfaces

Comp A Comp B
info

Comp A Comp B

Test

SW

© Sioux Embedded Systems | Confidential | 27

Test automation

 Control used to trigger actions

• Best practice: as “low” as possible in the architecture

 close to hardware

 as much coverage as possible

 trade-off between costs and coverage

• Possible to test below the UI

 UI is volatile (except “mechanical UI”)

 Visibility used to verify expected result

• Best practice: use logfile (also evidence) or internal

system information

 Avoid UI information (volatile)
27

