
Design for Testability

QA & Test

2010

Bryan Bakker

October 2010

© Sioux Embedded Systems | Confidential | 2

Contents

 Sioux

 Intro

 What is Design for Testability (DfT)?

 Test Automation

 Design Rules

 Pre-requisites

 Watch out

 Conclusion

 Examples from embedded/technical domain but

concepts also hold for office domain

 Scope: integration and system testing 2

© Sioux Embedded Systems | Confidential | 3

About Bryan Bakker

 Test Architect

 Certifications: ISTQB, TMap, Prince2

 Member of ISTQB Expert Level on Test Automation

 Accredited tutor of ISTQB Foundation

 Domains: medical systems, professional security

systems, semi-industry, electron microscopy

 Specialties: test automation, integration testing, design

for testability, reliability testing

3

About Sioux

© Sioux Embedded Systems | Confidential | 4

HERENTALS

MOSCOW

NEDERWEERT

EINDHOVEN

UTRECHT

http://www.punchinternational.com/web/index.asp?customer=1&ut=L
http://www.icos.be/index.htm
http://en.wikipedia.org/wiki/Image:Photo_lb.jpg

© Sioux Embedded Systems | Confidential | 5

Intro

 Device including HDD

 During test phase no serious HDD issues

 After release: HDD failures in field

Customers return units (NFF)

 False alarms!

 SW not robust against HDD imperfections

 Firmware upgrade needed to prevent more returns

 Could this have been prevented?

 Simulate HDD imperfections

 find defects during development/test

 more robust SW/System 5

© Sioux Embedded Systems | Confidential | 6

What is Design for Testability
(DfT)?

 Definition:
Take testing into account during design/architecture
definition

 Main goals:
 More efficient testing (find defects earlier, automation)

 Increase coverage of testing (manual and automatic, make it
possible to detect other problems)

 Enable automatic testing

6

Cost of defect fix (Barry Boehm)

Requirements Design Implementation Test Operation

Examples

 Think of:
 Testing without HW (not finished or expensive)

 Simulate environment (for automatic testing or unfeasible environment)

 Replace mechanical switches/buttons (test automation)

 Support for test automation

 Negative testing (failures from HW or environment)

 Support for test/sw engineers (diagnosis)

 Logging/Tracing

 Test components in isolation (modular architecture)

 Support for integration testing (test for messages)

 Test without UI

 Reliability/Profile testing: record user actions and replay

 By
 Visibility

 Control

© Sioux Embedded Systems | Confidential | 7

© Sioux Embedded Systems | Confidential | 8

Visibility

 Visibility

 Usually: subset of system information is shown to

end-user

 DfT: interface defined to extract info from system

 Also for “hidden” info

8

© Sioux Embedded Systems | Confidential | 9

Visibility

 Normal transfer of information

9

 Offer information to test software:

 Define test interface (test hook) to inspect info from

Comp A

 On Comp A or Comp B or in between?

Comp A Comp B
info

Comp A Comp B

visibility

Test

SW

© Sioux Embedded Systems | Confidential | 10

Visibility

10

 Test interface on Comp A:

Comp A Comp B

Test

SWTest i/f

 Comp A is aware of interface

© Sioux Embedded Systems | Confidential | 11

Visibility

11

 Test interface on Comp B:

Comp A Comp B

Test

SW Test i/f

 Comp B is aware of interface

© Sioux Embedded Systems | Confidential | 12

Visibility

12

 Use wrapper or

message queue inspector (e.g. VxWorks)

Comp A Comp B

visibility

Test

SW

 Comp A and B are unaware of interface

 But not everything is sent to other components…

 Where to interface is design decision

© Sioux Embedded Systems | Confidential | 13

Visibility examples

13

 Extract all kinds of system information

 Temperature

 #Images passing through image chain

 Recording speed of recorder

 Mechanical movements verification

 Inspect messages (for integration tests)

 State information (of system or components)

 Logging (better inspection/analysis, tool support)

 Resource usage (cpu, memory, network)

 …

© Sioux Embedded Systems | Confidential | 14

Control

 Control

 Usually: system controlled by system interfaces like

user, environment, network, etc.

 DfT: interface defined to control the system

14

© Sioux Embedded Systems | Confidential | 15

Control

 Normal transfer of information

15

 Information altered by test software:

 Define test interface to control Comp B

- set information

- ignore control from Comp A (optionally)

Comp A Comp B
info

Comp A Comp B

Test

SW

control

© Sioux Embedded Systems | Confidential | 16

Control examples

16

 Trigger all kinds of system actions

 Push buttons (UI, mechanical)

 Set configurations

 Simulate events (motion events, alarms, hot temps)

 Mechanical movements

 Simulate HW failures/imperfections

 …

© Sioux Embedded Systems | Confidential | 17

Design Rules (examples)

 State visibility:

 Every component stores state information

 In one dedicated component

 Testcases can get this information

 Possibility: with one key-press dump the complete system

information

(for defect analysis)

 Not to be used internally by system (no information hiding)

 State machines trace/log state transitions

 “easily” test the state machines with state-transition testing

 Determine coverage of testcases (n-switch coverage)

1717

© Sioux Embedded Systems | Confidential | 18

Design Rules (examples)

 Communication between each set of components visible

via interfaces (in tracing)

 Default functionality in VxWorks

 Communication can also be altered

 Used for integration testing

 All user actions are logged, and can be “replayed”

 Input for profile tests (software reliability engineering)

 Records error-guessing/exploratory tests for reproducibility

 Failures in HW to be simulated via (test i/f in) drivers

 Most projects start with: logging conventions

18

© Sioux Embedded Systems | Confidential | 19

Pre-requisites

 Early involvement of test discipline

 Influence on architecture/design
 By (test) architect

 Architecture must support effective testing

 Test requirements
 Functionality needed in the product to support testing

 Real requirements, need priority

 Implementation available on time

 Test interfaces
 Are deliverables of project

 Supported interfaces, thus maintained

 Used for automatic tests

 Test req/interfaces become part of the product
 Test functionality grows into supported functionality of the product

(Excel, XRays)

 Management commitment (DfT is an investment)

19

© Sioux Embedded Systems | Confidential | 20

Watch out

20

1. Disable test functionality in release versions?

 Like logging, tracing, test functions

 Different version, will behave differently

 Performance

 Issues in release version not reproducible in development

version

 Test functionality may still be needed

 Service/diagnostics/factory

 Problem analysis in the field

2. Testing via test interfaces not the real thing

 Customer/environment uses different interfaces

 Decide where to interface (coverage cost)
20

© Sioux Embedded Systems | Confidential | 21

Watch out

21

3. Beware: Probe Effect

 “unintended alteration in system behavior caused

by measuring that system” (wikipedia).

Be ware of these effects!

21

© Sioux Embedded Systems | Confidential | 22

Conclusion

 Design for Testability

 More efficient testing

 Increase coverage of testing

 Enable automatic testing

 Visibility & Control

 Part of design/architecture

 Nothing new! But hardly practiced in a structured way

 Beware: different in real world!

22

© Sioux Embedded Systems | Confidential | 23

Questions

23

www.sioux.eu

bryan.bakker@sioux.eu

+31 (0)40 26 77 100

Source of your development.

© Sioux Embedded Systems | Confidential | 25

Backup slides

25

© Sioux Embedded Systems | Confidential | 26

Combined

 Normal transfer of information

26

 Information retrieved and altered by test software:

 Define get and set test interfaces

Comp A Comp B
info

Comp A Comp B

Test

SW

© Sioux Embedded Systems | Confidential | 27

Test automation

 Control used to trigger actions

• Best practice: as “low” as possible in the architecture

 close to hardware

 as much coverage as possible

 trade-off between costs and coverage

• Possible to test below the UI

 UI is volatile (except “mechanical UI”)

 Visibility used to verify expected result

• Best practice: use logfile (also evidence) or internal

system information

 Avoid UI information (volatile)
27

